探索前景:机器学习中常见优化算法的比较分析

目录

一、介绍

二、技术背景

三、相关代码

四、结论


一、介绍

        优化算法在机器学习和深度学习中至关重要,可以最小化损失函数,从而改善模型的预测。每个优化器都有其独特的方法来导航损失函数的复杂环境以找到最小值。本文探讨了一些最常见的优化算法,包括 Adadelta、Adagrad、Adam、AdamW、SparseAdam、Adamax、ASGD、LBFGS、NAdam、RAdam、RMSprop、Rprop 和 SGD,并提供了对其机制、优势和应用的见解。

在寻求学习的过程中,通过优化的每一步不仅会带来更好的模型,而且会带来对旅程本身的更深入理解。

二、技术背景

        大多数常用的方法已经得到支持,并且接口足够通用,因此将来也可以轻松集成更复杂的方法。

  1. 随机梯度下降 (SGD):随机梯度下降 (SGD) 是最基本但最有效的优化算法之一。它以与目标函数相对于参数的梯度相反的方向更新模型的参数。学习率决定了向最小值迈出的步数的大小。虽然 SGD 对于大型数据集来说简单而高效,但收敛速度可能很慢,并且可能在最小值附近振荡。
  2. 动量和涅斯捷罗夫加速梯度 (NAG):为了克服SGD的振荡和缓慢收敛,引入了动量和涅斯捷罗夫加速梯度(NAG)技术。它们通过将先前更新向量的一小部分添加到当前更新中来合并动量的概念。这种方法有助于在相关方向上加速 SGD 并抑制振荡,使其比标准 SGD 更快、更稳定。
  3. Adagrad:Adagrad 通过使学习率适应参数,解决了适用于所有参数的全局学习率的限制。它对与频繁出现的要素相关的参数执行较小的更新,对与不频繁出现的要素相关的参数执行较大的更新。这种自适应学习率使 Adagrad 特别适用于稀疏数据。
  4. Adadelta:Adadelta 是 Adagrad 的扩展,旨在降低其激进的、单调下降的学习率。Adadelta 不是累积所有过去的平方梯度,而是将累积的过去梯度的窗口限制为固定大小,使其对学习制度的变化更可靠。
  5. RMSprop:RMSprop 修改了 Adagrad 的方法,通过引入衰减因子来累积以前的梯度,从而为最近的梯度赋予更多的权重。这使得它更适合在线和非平稳问题,类似于 Adadelta,但实现方式不同。
  6. Adam(自适应力矩估计):Adam 结合了 Adagrad 和 RMSprop 的优势,根据梯度的第一和第二矩调整每个参数的学习速率。该优化器因其在实践中的有效性而被广泛采用,尤其是在深度学习应用中。
  7. AdamW:AdamW 是 Adam 的一个变体,它将权重衰减与优化步骤分离。这种修改提高了性能和训练稳定性,尤其是在深度学习模型中,其中权重衰减被用作正则化的一种形式。
  8. SparseAdam:SparseAdam 是 Adam 的一个变体,旨在更有效地处理稀疏梯度。它使 Adam 算法仅在必要时更新模型参数,因此对于自然语言处理 (NLP) 和其他具有稀疏数据的应用程序特别有用。
  9. Adamax:Adamax 是基于无穷范数的 Adam 的变体。它对梯度中的噪声更鲁棒,并且在某些情况下可能比 Adam 更稳定,尽管它不太常用。
  10. ASGD(平均随机梯度下降):ASGD 会随时间推移对参数值进行平均,这可以在训练结束时实现更平滑的收敛。此方法对于具有嘈杂或波动梯度的任务特别有用。
  11. LBFGS(有限内存 Broyden-Fletcher-Goldfarb-Shanno):LBFGS 是准牛顿方法系列中的一种优化算法。它近似于 Broyden-Fletcher-Goldfarb-Shanno (BFGS) 算法,使用有限的内存量。由于其内存效率,它非常适合中小型优化问题。
  12. NAdam(涅斯捷罗夫加速自适应力矩估计):NAdam 将 Nesterov 加速梯度与 Adam 相结合,将 Nesterov 动量的 lookahead 属性纳入 Adam 的框架中。这种组合通常可以提高性能并加快收敛速度。
  13. 拉丹(纠正亚当): RAdam 在 Adam 优化器中引入了一个整流项来动态调整自适应学习率,解决了一些与收敛速度和泛化性能相关的问题。它提供了更稳定和一致的优化环境。
  14. Rprop(弹性反向传播):Rprop 仅使用梯度符号调整每个参数的更新,忽略其幅度。这使得它对梯度幅度变化很大但不太适合小批量学习或深度学习应用的问题非常有效。

三、相关代码

        创建一个完整的 Python 示例来演示如何在合成数据集上使用这些优化器涉及几个步骤。我们将使用一个简单的回归问题作为示例,其中的任务是从特征预测目标变量。此示例将涵盖创建合成数据集、使用 PyTorch 定义简单神经网络模型、使用每个优化器训练此模型,以及绘制训练指标以比较其性能。

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# Generate synthetic data
np.random.seed(42)
X = np.random.rand(1000, 1) * 5  # Features
y = 2.7 * X + np.random.randn(1000, 1) * 0.9  # Target variable with noise# Convert to torch tensors
X = torch.from_numpy(X).float()
y = torch.from_numpy(y).float()# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)class LinearRegressionModel(nn.Module):def __init__(self):super(LinearRegressionModel, self).__init__()self.linear = nn.Linear(1, 1)  # One input feature and one outputdef forward(self, x):return self.linear(x)def train_model(optimizer_name, learning_rate=0.01, epochs=100):model = LinearRegressionModel()criterion = nn.MSELoss()# Select optimizeroptimizers = {"SGD": optim.SGD(model.parameters(), lr=learning_rate),"Adadelta": optim.Adadelta(model.parameters(), lr=learning_rate),"Adagrad": optim.Adagrad(model.parameters(), lr=learning_rate),"Adam": optim.Adam(model.parameters(), lr=learning_rate),"AdamW": optim.AdamW(model.parameters(), lr=learning_rate),"Adamax": optim.Adamax(model.parameters(), lr=learning_rate),"ASGD": optim.ASGD(model.parameters(), lr=learning_rate),"NAdam": optim.NAdam(model.parameters(), lr=learning_rate),"RAdam": optim.RAdam(model.parameters(), lr=learning_rate),"RMSprop": optim.RMSprop(model.parameters(), lr=learning_rate),"Rprop": optim.Rprop(model.parameters(), lr=learning_rate),}if optimizer_name == "LBFGS":optimizer = optim.LBFGS(model.parameters(), lr=learning_rate, max_iter=20, history_size=100)else:optimizer = optimizers[optimizer_name]train_losses = []for epoch in range(epochs):def closure():if torch.is_grad_enabled():optimizer.zero_grad()outputs = model(X_train)loss = criterion(outputs, y_train)if loss.requires_grad:loss.backward()return loss# Special handling for LBFGSif optimizer_name == "LBFGS":optimizer.step(closure)with torch.no_grad():train_losses.append(closure().item())else:# Forward passy_pred = model(X_train)loss = criterion(y_pred, y_train)train_losses.append(loss.item())# Backward pass and optimizeoptimizer.zero_grad()loss.backward()optimizer.step()# Test the modelmodel.eval()with torch.no_grad():y_pred = model(X_test)test_loss = mean_squared_error(y_test.numpy(), y_pred.numpy())return train_losses, test_lossoptimizer_names = ["SGD", "Adadelta", "Adagrad", "Adam", "AdamW", "Adamax", "ASGD", "LBFGS", "NAdam", "RAdam", "RMSprop", "Rprop"]plt.figure(figsize=(14, 10))for optimizer_name in optimizer_names:train_losses, test_loss = train_model(optimizer_name, learning_rate=0.01, epochs=100)plt.plot(train_losses, label=f"{optimizer_name} - Test Loss: {test_loss:.4f}")plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Training Loss by Optimizer")
plt.legend()
plt.show()

Notes:

  • 为简单起见,所有优化器都使用 0.01 的默认学习率。调整学习率和其他超参数可能会导致不同的性能结果。
  • 为了完整性,包含优化器,但通常用于具有稀疏梯度的模型,这可能不适用于此简单线性回归示例。SparseAdam
  • 由于其行搜索方法,优化器需要的训练循环略有不同。提供的训练功能可能需要修改才能正确使用 。LBFGSLBFGS

        此示例基本比较了不同优化器在简单合成数据集上的表现。对于更复杂的模型和数据集,优化器之间的差异可能更明显,优化器的选择会显著影响模型性能。

四、结论

        总之,每个优化器都有其优点和缺点,优化器的选择可以显着影响机器学习模型的性能。选择取决于具体问题、数据的性质和模型体系结构。了解这些优化器的基本机制和特征对于有效地将它们应用于各种机器学习挑战至关重要。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/498189.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端Ajax获取当前外网IP地址并通过腾讯接口解析地理位置

目录 一、获取访问端IP地址 二、可用的IP获取接口 1、韩小韩IP获取接口: 2、ipify API 附3、失败的太平洋接口 三、腾讯位置服务-IP位置查询接口 一、获取访问端IP地址 原计划使用后端HttpServletRequest 获取访问端的IP地址,但在nginx和堡垒机等阻…

Python多功能课堂点名器、抽签工具

一、问题缘起 去年,ChatGPT浪潮袭来,我懂简单的Python基础语法,又有一些点子,于是借助于人工智能问答工具,一步一步地制作了一个点名器,也可以用于抽签。当时,我已经设计好页面和基础的功能&am…

Leetcode 第 385 场周赛题解

Leetcode 第 385 场周赛题解 Leetcode 第 385 场周赛题解题目1:3042. 统计前后缀下标对 I思路代码复杂度分析 题目2:3043. 最长公共前缀的长度思路代码复杂度分析 题目3:3044. 出现频率最高的质数思路代码复杂度分析 题目4:3045. …

【EFK】基于K8S构建EFK+logstash+kafka日志平台

基于K8S构建EFKlogstashkafka日志平台 一、常见日志收集方案1.1、EFK1.2、ELK Stack1.3、ELK filbeat1.4、其他方案 二、EFK组件介绍2.1、Elasticsearch组件2.2、Filebeat组件【1】 Filebeat和beat关系【2】Filebeat是什么【3】Filebeat工作原理【4】传输方案 2.3、Logstash组件…

本届挑战赛季军方案:基于图网络及LLM AGENT的微服务系统异常检测和根因定位方法

aiboco团队荣获本届挑战赛季军。该团队来自亿阳信通。 方案介绍 本届挑战赛采用开放式赛题,基于建行云龙舟运维平台的稳定性工具和多维监控系统,模拟大型的生活服务APP的生产环境,提供端到端的全链路的日志、指标和调用链数据。参赛队伍在组…

操作系统:IO管理概述

🌈个人主页:godspeed_lucip 🔥 系列专栏:OS从基础到进阶 🏆🏆本文完整PDF源文件请翻阅至文章底部下载。🏆🏆 1 I/O设备的基本概念与分类1.1 总览1.2 什么是IO设备1.3 IO设备的分类1…

yolov8涨点技巧,添加SwinTransformer注意力机制,提升目标检测效果

目录 摘要 SwinTransformer原理 代码实现 YOLOv8详细添加步骤 ymal文件内容 one_swinTrans three_swinTrans 启动命令 完整代码分享 摘要 Swin Transformer通过引入创新的分层注意力机制展现了其架构的独特性,该机制通过将注意力区域划分为块并在这些块内执…

NutUI + taro +vue 开发遇到的问题 使用popup组件 内部元素滚动遇到的的问题

1 popup 弹出内容时 弹出的框内元素数据很长需要滚动时 本地可以正常滚动 打包成小程序后无法滚动 如这样的免责条款内容 代码如下 解决办法 1 把2处的单位换成百分比 弹框能滚动但是 是popup 里面所有的元素都一起滚动 导致标题都滚走了 2 scroll-y 改成: :scrol…

Spring Task的应用

介绍 Spring Task是Spring框架提供的任务调度工具,可以按照约定的时间自动执行某个代码逻辑。 定位: 定时任务框架 作用: 定时自动执行某段Java代码 应用场景: 引用卡每月还款提醒、银行贷款每月还款提醒、火车票售票系统处理未支…

Vulnhub内网渗透Masashi-1靶场通关

完整内容见我的博客xzajyjs.cn 靶场下载地址。 下载下来后是 .vmdk 格式,vm直接导入。 M1请使用UTM进行搭建,教程见此。该靶场可能出现网络问题,解决方案见此 信息搜集 arp-scan -l # 主机发现,目标位192.168.168.14 nmap -sV …

单片机SWJ 调试端口(SW-DP和JTAG)、SWD下载电路

单片机下载接口是指用于将编写好的程序代码下载到单片机芯片中的接口。常见的单片机下载接口包括以下几种: 1. **串口下载接口**:通过串口(如UART或RS-232接口)与计算机或下载器相连,将程序代码通过串口传输到单片机内…

为高频大功率设计的双面水冷厚膜电阻方案

EAK双面水冷厚膜电阻是一种具有良好散热性能的电阻器,常用于需要高效散热的电子设备中。其包括第一绝缘介质层、厚膜电阻层、第二绝缘介质层以及用于液体流通的金属腔体,第一绝缘介质层设置于金属腔体的上表面;第一绝缘介质层表面设有厚膜电阻…