Flink状态存储-StateBackend

文章目录

  • 前言
  • 一、MemoryStateBackend
  • 二、FSStateBackend
  • 三、RocksDBStateBackend
  • 四、StateBackend配置方式
  • 五、状态持久化
  • 六、状态重分布
          • OperatorState 重分布
          • KeyedState 重分布
  • 七、状态过期


前言

Flink是一个流处理框架,它需要对数据流进行状态管理以支持复杂的计算逻辑。在Flink中,状态存储是指如何和在哪里存储这些状态数据。Flink提供了多种状态后端(State Backend)来实现这种存储,以满足不同的应用场景和性能需求。 StateBackend需要具备如下两种能力:
1、在计算过程中提供访问 State 的能力,开发者在编写业务逻辑中能够使用 StateBackend 的接口读写数据。
2、能够将 State 持久化到外部存储,提供容错能力。
根据使用场景的不同, Flink 内置了 3 种 StateBackend 。其体系结构如下图所示。
在这里插入图片描述
纯内存:MemoryStateBackend,适用于验证、测试,不推荐生产环境。
内存+文件:FsStateBackend,适用于长周期大规模的数据。
RocksDB:RocksDBStateBackend,适用于长周期大规模的数据。

在运行时,MemoryStateBackend 和 FsStateBackend 本地的 State 都保存在 TaskManager 的内存中,所以其底层依赖于 HeapKeyedStateBackend。HeapKeyedStateBackend 面向 Flink 引擎内部,使用者无须感知。


一、MemoryStateBackend

默认情况下,状态信息是通过MemoryStateBackend 存储在 TaskManager 的堆内存中的, KV 类型的State,窗口算子的 State 使用 HashTable 来保存数据、触发器等。执行检查点的时候,会把 State 的快照数据保存到 JobManager 进程的内存中。 MemoryStateBackend 可以使用异步的方式进行快照,(也可以同步),推荐异步,避免阻塞算子处理数据。

基于内存的 StateBackend 在生产环境下不建议使用,可以在本地开发调试测试 。
注意点如下 :

  • State 存储在 JobManager 的内存中,受限于 JobManager 的内存大小。
  • 每个 State 默认 5MB,可通过 MemoryStateBackend 构造函数调整。
  • 每个 State 不能超过 Akka Frame 大小。

二、FSStateBackend

文件型状态存储 FSStateBackend,运行时所需的 State 数据全部保存在 TaskManager 的内存中, 执行检查点的时候,会把 State 的快照数据保存到配置的文件系统中,如使用 HDFS 的路径为 “hdfs://namenode:40010/flink/checkpoints”,使用本地文件系统的路径为:“file:///data/flink/checkpoints”。

FSStateBackend 适用于处理大状态、长窗口,或大键值状态的有状态处理任务。
缺点:
状态大小受TaskManager内存限制(默认支持5M)
优点:
状态访问速度很快
状态信息不会丢失
用于: 生产,也可存储状态数据量大的情况

三、RocksDBStateBackend

RocksDBStateBackend 跟内存型和文件型 StateBackend 不同,其使用嵌入式的本地数据库 RocksDB 将流计算数据状态存储在本地磁盘中,不会受限于 TaskManager 的内存大小,在执行检查点的时候,再将整个 RocksDB 中保存的 State 数据全量或者增量持久化到配置的文件系统中,在 JobManager 内存中会存储少量的检查点元数据。RocksDB 克服了 State 受内存限制的问题,同时又能够持久化到远端文件系统中,比较适合在生产中使用。 但是 RocksDBStateBackend 相比基于内存的 StateBackcnd ,访问 State 的成本高很多,可能导致数据流的吞吐量剧烈下降,甚至可能降低为原来的 1/10。

适用场景:
最适合用于处理大状态、长窗口,或大键值状态的有状态处理任务。
RocksDBStateBackend 非常适合用于高可用方案。
RocksDBStateBackend 是目前唯一支持增量检查点的后端,增量检查点非常适用于超大状态的场景。
注意点

  • 总 State 大小仅限于磁盘大小,不受内存限制。
  • RocksDBStateBackend 也需要配置外部文件系统,集中保存 State。
  • RocksDB的 JNI API 基于byte数组,单 key 和单 Value 的大小不能超过 231 字节。
  • 对于使用具有合并操作状态的应用程序,如 ListState ,随着时间可能会累积到超过 231 字节大小,这将会导致在接下来的查询中失败。

四、StateBackend配置方式

  • 单任务调整
修改当前任务代码
public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setStateBackend(newFsStateBackend("hdfs://namenode:9000/flink/checkpoints"));或者new MemoryStateBackend()或者new RocksDBStateBackend(filebackend, true);【需要添加第三方依赖】
}
  • 全局调整(不建议)
修改flink-conf.yaml
state.backend: filesystem
state.checkpoints.dir: hdfs://namenode:9000/flink/checkpoints
注意:state.backend的值可以是下面几种:jobmanager(MemoryStateBackend),
filesystem(FsStateBackend), rocksdb(RocksDBStateBackend)

五、状态持久化

StateBackend 中的数据最终需要持久化到第三方存储中,确保集群故障或者作业故障能够恢复。 HeapSnapshotStrategy 策略对应于 HeapKeyedStateBackend,RocksDBStateBackend 的持久化策略有两种:全量持久化策略(RocksFullSnapshotStrategy)和 增量持久化策略 (RocksIncementalSnapshotStrategy)。

1、全量持久化策略
全盘持久化,也就是说每次把全量的 Slate 写人到状态存储中 (如 HDFS)。内存型、文件型、 RocksDB 类型的 StatcBackend 支持全量持久化策略。 在执行持久化策略的时候,使用异步机制,每个算子启动 1 个独立的线程,将自身的状态写入分布式存储中。在做持久化的过程中,状态可能会被持续修改,基于内存的状态后端使用 CopyOnWriteStateTable 来保证线程安全,RocksDBStateBackend 则使用 RocksDB 的快照机制,使用快照来保证线程安全。

2、增量持久化策略
增量持久化就是每次持久化增量的 State,只有 RocksDBStateBackend 支持增量持久化。Flink 增量式的检查点以 RocksDB 为基础, RocksDB 是一个基于 LSM-Tree 的 KV 存储。新的数据保存在内存中, 称为 memtable。如果 Key 相同,后到的数据将覆盖之前的数据,一旦 memtable 写满了,RocksDB 就会将数据压缩并写入磁盘。memtable 的数据持久化到磁盘后,就变成了不可变的 sstable。

因为 sstable 是不可变的,Flink 对比前一个检查点创建和删除的 RocksDB sstable 文件就可以计算出状态有哪些发生改变。

为了确保 sstable 是不可变的,Flink 会在 RocksDB 触发刷新操作,强制将 memtable 刷新到磁盘上 。在 Flink 执行检查点时,会将新的 sstable 持久化到 HDFS 中,同时保留引用。这个过程中 Flink 并不会持久化本地所有的 sstable,因为本地的一部分历史 sstable 在之前的检查点中已经持久化到存储中了,只需增加对 sstable 文件的引用次数就可以。 RocksDB 会在后台合并 sstable 并删除其中重复的数据。然后在 RocksDB 删除原来的 sstable,替换成新合成的 sstable.。新的 sstable 包含了被删除的 sstable中的信息,通过合并历史的 sstable 会合并成一个新的 sstable,并删除这些历史sstable。可以减少检查点的历史文件,避免大量小文件的产生。

六、状态重分布

在实际的生产环绕中,作业预先设置的并行度很多时候并不合理,太多则浪费资源,太少则资源不足,可能导致数据积压延迟变大或者处理时间太长,所以在运维过程中,需要根据作业的运行监控数据调整其并行度。调整并行度的关键是处理 State。回想一下前文中的内容,State 位于算子内,改变了并行度,则意味着算子个数改变了,需要将 State 重新分配给算子。下面从 OperatorState 和 KeyedState 两种 State 角度,介绍如何将 State 重新分配给算子。

OperatorState 重分布

1、ListState
并行度在改变的时候,会将并发上的每个 List 都取出,然后把这些 List 合并到一个新的 List,根据元素的个数均匀分配给新的 Task。

2、UnionListState
比 ListState 更加灵活, 把划分的方式交给用户去做,当改变并发的时候,会将原来的 List 拼接起来,然后不做划分,直接交给用户。

3、BroadcastState
操作 BroadcastState 的 UDF 需要保证不可变性,所以各个算子的同一个 BroadcastState 完全一样。在改变并发的时候,把这些数据分发到新的 Task 即可。

KeyedState 重分布

基于 Key-Group ,每个 Key 隶属于唯一的 Key-Group。Key Group 分配给 Task 实例,每个 Task 至少有 一个 Key-Group 。 Key-Group 数量取决于最大并行度 (MaxParallism) 。 KeyedStream 并发的上限是 Key-Group 的数量,等于最大并行度。

七、状态过期

1、DataStream 中状态过期
可以对 每一个 State 设置 清理策略 StateTtlConfig,可以设置的内容如下:
过期时间:超过多长时间未访问,视为 State 过期,类似于缓存。
过期时间更新策略:创建和写时更新、读取和写时更新。
State 可见性:未清理可用,超时则不可用。

import org.apache.flink.api.common.state.StateTtlConfig;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.time.Time;StateTtlConfig ttlConfig = StateTtlConfig.newBuilder(Time.seconds(1)).setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite).setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired).build();ValueStateDescriptor<String> stateDescriptor = new ValueStateDescriptor<>("text state", String.class);
stateDescriptor.enableTimeToLive(ttlConfig);

2、Flink SQL 中状态过期
Flink SQL 在流 Join、聚合类的场景中,使用了 State,如果 State 不定时清理。 则可能会导致 State 过多,内存溢出。 为了稳妥起见,最好为每个 FLink SQL 作业提供 State 清理的策略。如果定时清理 State,则存在可能因为 State 被清理而导致计算结果不完全准确的风险。FLink 的 Table API 和 SQL 接口中提供了参数设置选项,能够让使用者在精确和资源消耗做折中。

StreamQueryConfig qConfig = ... 
//设置过期时间为 min = 12 小时 ,max = 24 小时 
qConfig.withIdleStateRetentionTime(Time.hours(12)Time.hours(24));

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/504958.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【合宙ESP32C3 Arduino开发】第四篇:TFT_eSPI 驱动 合宙Air101 ST7735 LCD 显示普通时钟,模块化编程

忘记过去&#xff0c;超越自己 ❤️ 博客主页 单片机菜鸟哥&#xff0c;一个野生非专业硬件IOT爱好者 ❤️❤️ 本篇创建时间 2024-03-02❤️❤️ 本篇更新时间 2024-03-02❤️&#x1f389; 欢迎关注 &#x1f50e;点赞 &#x1f44d;收藏 ⭐️留言&#x1f4dd;&#x1f64f;…

基于语义解析的KBQA——代码和论文详细分析

根据论文&#xff1a;Semantic Parsing on Freebase from Question-Answer Pairs&#xff0c;分析其代码和步骤&#xff0c;以加强对这一流程的深入理解&#xff0c;重点关注模型的输入、输出和具体方法。 前言 提供阅读本文的前提知识&#xff0c;引用自Semantic Parsing on…

技术活也能轻松搞定!Xinstall一键完成Android多渠道打包

随着移动互联网的迅猛发展&#xff0c;Android应用市场呈现出百花齐放的态势。为了满足不同市场的需求&#xff0c;开发者们常常需要为同一个应用打包多个渠道版本。然而&#xff0c;传统的打包方式繁琐且耗时&#xff0c;让渠道运营人员苦不堪言。今天&#xff0c;我们就来聊聊…

【黑马程序员】4、TypeScript高级类型_黑马程序员前端TypeScript教程,TypeScript零基础入门到实战全套教程

课程地址&#xff1a;【黑马程序员前端TypeScript教程&#xff0c;TypeScript零基础入门到实战全套教程】 https://www.bilibili.com/video/BV14Z4y1u7pi/?share_sourcecopy_web&vd_sourceb1cb921b73fe3808550eaf2224d1c155 目录 4、TypeScript高级类型 4.1 class类 4…

什么是片内片间均匀性?

均匀性在芯片制程的每一个工序中都需要考虑到&#xff0c;包括薄膜沉积&#xff0c;刻蚀&#xff0c;光刻&#xff0c;cmp&#xff0c;离子注入等。较高的均匀性才能保证芯片的产品与性能。那么片内和片间非均匀性是什么&#xff1f;如何计算&#xff1f;有什么作用呢&#xff…

查找算法——java

顺序查找&#xff08;顺序表查找&#xff09; 顺序查找也称为线形查找&#xff0c;属于无序查找算法。从数据结构线形表的一端开始&#xff0c;顺序扫描&#xff0c;依次将扫描到的结 点关键字与给定值k相比较&#xff0c;若相等则表示查找成功&#xff1b;若扫描结束仍没…

Sublime Text4代码配色自定义方案

文章目录 前言效果图 前言 关于Sublime Text对于我的使用体验&#xff0c;只能说内置的代码主题真的都太low了&#xff0c;一点都不好看。所以接下来我分享一下我自定义代码配色。当然&#xff0c;大家也可以通过我给的中文翻译注释来自定义自己喜欢的颜色。废话不多说&#x…

Unity中URP下实现水体(C#动态生成渐变图)

文章目录 前言一、Shader部分1、申明水渐变图纹理和采样器2、在片元着色器&#xff0c;进行纹理采样&#xff0c;并且输出 二、C#脚本部分1、我们新建一个C#脚本2、我们定义两个变量3、在Start内&#xff0c;new 一个Texture2D(宽&#xff0c;高)4、定义一个Color[宽*高]的颜色…

vue3 vite项目一运行就401(Unauthorized)

问题&#xff1a;项目一执行&#xff1a; pnpm run dev, 启动就出错&#xff0c; Failed to load resource: the server responded with a status of 401 (Unauthorized) 分析&#xff1a; 项目之前是正常运行的&#xff0c;没有问题&#xff0c;回溯刚刚改动&#xff0c;还原…

操作系统原理与实验——实验三优先级进程调度

实验指南 运行环境&#xff1a; Dev c 算法思想&#xff1a; 本实验是模拟进程调度中的优先级算法&#xff0c;在先来先服务算法的基础上&#xff0c;只需对就绪队列到达时间进行一次排序。第一个到达的进程首先进入CPU&#xff0c;将其从就绪队列中出队后。若此后队首的进程的…

Linux:kubernetes(k8s)node节点加入master主节点(3)

Linux&#xff1a;kubernetes&#xff08;k8s&#xff09;搭建mater节点&#xff08;kubeadm&#xff0c;kubectl&#xff0c;kubelet&#xff09;-CSDN博客https://blog.csdn.net/w14768855/article/details/136415575?spm1001.2014.3001.5502 我在上一章部署好了主节点&…

【JSON2WEB】07 Amis可视化设计器CRUD增删改查

总算到重点中的核心内容&#xff0c;CRUD也就是增删改查&#xff0c;一个设计科学合理的管理信息系统&#xff0c;95%的就是CRUD&#xff0c;达不到这个比例要重新考虑一下你的数据库设计了。 1 新增页面 Step 1 启动amis-editor Setp 2 新增页面 名称和路径随便命名&#xf…