贪心算法(蓝桥杯 C++ 题目 代表 注解)

介绍:

贪心算法(Greedy Algorithm)是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选择,从而希望最终能够得到全局最好或最优的结果的算法。它通常用来解决一些最优化问题,如最小生成树、最短路径等。

贪心算法的核心思想是每次都选择局部最优解,而不考虑全局的情况。通过不断地做出局部最优选择,整体上就能得到一个接近最优解的解。

然而,贪心算法并不是在所有情况下都能得到最优解。由于贪心算法只考虑当前的最优选择,而不进行回溯,可能会导致最终结果并非全局最优解。因此,在使用贪心算法时,需要确保问题具备贪心选择性质(即局部最优解能够导致全局最优解)以及最优子结构性质(即问题的最优解包含了其子问题的最优解)。

在应用贪心算法时,可以采用贪心选择、最优子结构和证明最优性三个步骤来设计算法。首先,通过贪心选择找到局部最优解;然后,通过证明最优性来证明贪心选择是安全的;最后,通过最优子结构来将问题分解为子问题,并迭代地求解子问题。

总之,贪心算法是一种简单而有效的算法,可以在一些满足贪心选择性质和最优子结构性质的问题上得到最优解。然而,在应用贪心算法时需要注意验证问题的性质,以确保得到正确的结果。

题目一(找零问题):

 ​​

代码: 

#include<iostream>
using namespace std;
int main()
{int n, i = 1;cin >> n;int a[6] = { 0,100,50,20,5,1 };int cnt[6] = { 0 };while (n){cnt[i] = n / a[i];n -= cnt[i] * a[i];i++;}for (int i = 1; i <= 5; i++)cout << a[i] << ":" << cnt[i] << endl;
}

 题目二(分糖果):

代码: 

#include<iostream>
using namespace std;
int main()
{int n;cin >> n;int a[105];int ans = 0;for (int i = 1; i <= n; i++)cin >> a[i];while (1){int temp = a[1] / 2;//记录第一个孩子的一半,要给最后一个孩子的for (int i = 1; i < n; i++){a[i] = a[i] / 2 + a[i + 1] / 2;//依次传递}a[n] = a[n] / 2 + temp;//最后一个的为自身一半加上第一个孩子的一半int flag = 1;//记录是否都相同for (int i = 1; i <= n; i++){if (a[i] != a[1]){flag = 0;//标记为不同}if (a[i] % 2 == 1)//为基数补一个{a[i] += 1;ans++;//记录加上补了一个}}if (flag == 1)//都相同跳出break;}cout << ans;
}

 题目三(翻硬币):

代码:

#include<iostream>
using namespace std;
string s, x;
int cnt=0;
void swaps(int k)
{if (s[k] == '*')s[k] = 'o';elses[k] = '*';
}
int main()
{cin >> s >> x;for (int i = 0; i < s.size(); i++){if (s[i] != x[i]){swaps(i);swaps(i + 1);cnt++;}}cout << cnt << endl;
}

题目四(答疑):

代码:

#include<iostream>
#include<algorithm>
using namespace std;
struct node
{int s, a, e;long long sum;
};
bool cmp(node a, node b)//根据时间总和
{return a.sum < b.sum;
}
int main()
{int n;cin >> n;node student[1005];for (int i = 1; i <= n; i++){cin >> student[i].s >> student[i].a >> student[i].e;student[i].sum = student[i].s + student[i].a + student[i].e;}sort(student + 1, student + n + 1, cmp);//排序,从小到大long long time = student[1].s + student[1].a;//第一个学生此时发long long ans = time;for (int i = 2; i <= n; i++){time += student[i].s + student[i].a + student[i - 1].e;//这一个学生发的时间在上一个学生发的时间上再加上上一个学生离开的时间加上该生进入和询问的时间ans += time;}cout << ans;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/526151.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JVM基本概念、命令、参数、GC日志总结

原文: 赵侠客 一、前言 NPE&#xff08;NullPointerException&#xff09;和OOM&#xff08;OutofMemoryError&#xff09;在JAVA程序员中扮演着重要的角色&#xff0c;它也是很多人始终摆脱不掉的梦魇&#xff0c;与NPE不同的是OOM一旦在生产环境中出现就意味着只靠代码已经无…

FPGA的配置状态字寄存器Status Register

目录 简介 状态字定义 Unknown Device/Many Unknow Devices 解决办法 一般原因 简介 Xilinx的FPGA有多种配置接口&#xff0c;如SPI&#xff0c;BPI&#xff0c;SeletMAP&#xff0c;Serial&#xff0c;JTAG等&#xff1b;如果从时钟发送者的角度分&#xff0c;还可以…

读书笔记之《理解和改变世界》:从信息知识智能的本质看AI

《理解和改变世界: 从信息到知识与智能》作者:是(法) 约瑟夫希发基思&#xff0c; 原作名: Understanding and Changing the World: From Information to Knowledge and Intelligence&#xff0c;2023年出版。 约瑟夫希发基思&#xff08;Joseph Sifakis&#xff09;&#xff…

Java高频面试之并发篇

有需要互关的小伙伴,关注一下,有关必回关,争取今年认证早日拿到博客专家 并行和并发有什么区别&#xff1f; 并行是同时执行多个任务&#xff0c;而并发是多个任务在一段时间内交替执行。并行&#xff08;Parallel&#xff09;是指同时执行多个任务或操作&#xff0c;通过同时…

Java开发:对象间复制属性,方法归纳

在Java开发中&#xff0c;对象间复制属性是一项常见的任务&#xff0c;特别是在处理层&#xff08;如控制器层&#xff09;与服务层或数据传输对象&#xff08;DTOs&#xff09;之间的数据转换时。有多种方法可以实现User对象到UserDTO对象的属性复制&#xff0c;下面列举了几种…

浅析开源内存数据库Fastdb

介绍&#xff1a; Fastdb是免费开源内存数据库&#xff0c;其优秀的性能&#xff0c;和简洁的C代码&#xff0c;让我学习使用过程中收益颇多&#xff0c;但是国内中文相关研究的文章相当稀少&#xff0c;外文我查询相当不便。有兴趣的朋友可以通过以下网站访问&#xff1a;Mai…

深入浅出计算机网络 day.1 概论③ 电路交换、分组交换和报文交换

人无法同时拥有青春和对青春的感受 —— 04.3.9 内容概述 01.电路交换、分组交换和报文交换 02.三种交换方式的对比 一、电路交换、分组交换和报文交换 1.电路交换 计算机之间的数据传送是突发式的&#xff0c;当使用电路交换来传送计算机数据时&#xff0c;其线路的传输效率一…

Day33-计算机基础3

Day33-计算机基础3 1.根据TCP/IP进行Linux内核参数优化1.1 例1&#xff1a;调整访问服务端的【客户端】的动态端口范围 &#xff0c;LVS&#xff08;10-50万并发&#xff09;&#xff0c;NGINX负载&#xff0c;SQUID缓存服务,1.2 企业案例&#xff1a;DOS攻击的案例&#xff1a…

垃圾回收:JavaScript内存管理的利器

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

React-路由导航

1.声明式路由导航 1.1概念 说明&#xff1a;声明式导航是指通过在模版中通过<Link/>组件描述出要跳转到哪里去&#xff0c;比如后台管理系统的左侧菜单通常使用这种方式进行。 import {Link} from "react-router-dom" const Login()>{return (<div>…

CentOS 7.6安装部署Seafile服务器

今天飞飞和你们分享CentOS 7.6上安装基于MySQL/MariaDB的Seafile服务器的方法&#xff0c;包括下载和安装7.0.5版本、配置数据库、启动服务器等步骤。安装成功后&#xff0c;需要通过nginx反向代理才能访问seafile服务。 通过预编译好的安装包来安装并运行基于 MySQL/MariaDB …

2.4_2 死锁的处理策略——预防死锁

2.4_2 死锁的处理策略——预防死锁 &#xff08;一&#xff09;破坏互斥条件 互斥条件&#xff1a;只有对必须互斥使用的资源的争抢才会导致死锁。 如果把只能互斥使用的资源改造为允许共享使用&#xff0c;则系统不会进入死锁状态。比如&#xff1a;SPOOLing技术。操作系统可以…