R语言复现:如何利用logistic逐步回归进行影响因素分析?

Logistic回归在医学科研、特别是观察性研究领域,无论是现况调查、病例对照研究、还是队列研究中都是大家经常用到的统计方法,而在影响因素研究筛选自变量时,大家习惯性用的比较多的还是先单后多,P<0.05纳入多因素研究,很少用逐步回归法,有些同学可能听过但是了解也不多,这里先简单介绍一下。

那么什么时候推荐用逐步回归呢?有以下2种情况,可以考虑使用:

①构建预测模型时候,就放心大胆的用。其他场景,一般不建议用逐步回归法。

②探索性研究、探讨多个影响因素时,候选的影响因素实在太多(单因素分析后P值<0.05者,仍然超过10个),或者样本量不大。

逐步回归法的原理听上去很复杂,但是用R语言几行代码也可以搞定,只是R语言需要一定的代码基础,一时半会儿也无法学会,因此,这里结合实操案例为大家介绍一个智能在线免费统计分析平台——风暴统计

一、实操数据介绍

1372a1e441a211372f776d765cea61f7.png

这里我们使用的是R语言自带数据集MASS中的birthwt,birthwt是一份与婴儿出生体重低相关的危险因素数据,其中包含的变量见下表,根据研究设计,以“low”作为结局变量。

二、风暴统计智能在线免费平台复现

目前风暴统计平台可以非常快速准确的完成logistic回归,只需2步!

  • 选入回归自变量

  • 选择自变量筛选方式

全部是菜单式操作,完成后,界面直接给出规范三线表结果!还可以随着变量的调整实时更新结果,在数据探索初期,可以节省不少工作量!在撰写报告时,也不用再手工绘制三线表,填写数据了!统计小白也可以轻松上手!

1.logistic回归自变量选择

首先,选入变量,包括因变量定量自变量分类自变量

3c0f2c0b3ae059be0ed2f0984cae35b4.png

①因变量

这里因变量建议使用0和1进行表示,0代表阴性结局(如:未患病、二分类变量中值较小的组),1代表阳性结局(如:患病或二分类结局中值较大的组)。

②定量自变量

平台会将分类数大于5的变量自动归为定量自变量,并在选取定量自变量时,优先显示在上方,便于选取。

67420f2fb31eefd36aba325a1f9a4f29.png

③分类自变量

同理,分类数小于5类的变量归入分类变量,在选取变量时,优先显示分类变量。

6a48cb3d2c6cc5eb72246f7044289448.png

接着,选择自变量的筛选方式,包括先单后多法逐步回归法

e6078b6629559157bb11f1571aebc6f6.png

2.选择自变量筛选方式

根据研究需要,如果需要开展先单后多的自变量筛选方式,那么“是否开展逐步回归分析”选择“否”。P阈值自行选择,如果自变量个数过少,可以适当放宽标准,0.1、0.2也都是可以的。当选择不限制时,选入的全部自变量都将纳入多因素回归分析。

如果需要选择逐步回归法,平台也提供了多种选择:双向逐步回归,向前逐步回归,向后逐步回归以及考虑到有时P值大于0.05的变量在逐步回归时也会留在模型中,新增了根据P<0.05的原则开展逐步回归

这里我们选择单因素P<0.05的变量进入多因素开展逐步回归。

e79d086db47b1a76de2f1f58f6e7fe35.png

3.下载结果

平台给出了多种结果展示,仅展示单因素回归结果仅展示多因素回归结果单因素+多因素显示在同一个表格中!

4e29460fa5eb2580beb9011c310cfe54.png

然后也可以选择小数位数,默认情况下,P值为3位小数,其他统计量为2位小数。

指定小数位数后,P值与统计量的小数位数将会统一。调整完成后,下载最终的三线表结果,平台支持下载excel或word

0a980857db0f7b7038ed8319fa9da8f7.png

三、R语言软件复现

这里采用autoReg包,autoReg包是一款功能十分强大的R包,不仅可以快捷完成基线表的制作,还可以直接一行代码输出回归分析(支持线性模型、广义线性模型和比例风险模型)的表格。

1.logistic回归模型构建

使用glm() 函数构建回归模型,glm(y~x1+x2+x3+x4+x......,data=数据集名,family="binomial"),指定因变量与自变量,设置数据集名。

logfit<-glm(low ~ age + lwt + race + smoke + ptd + ht + ui + ftv,data=bwt,family = "binomial")
summary(logfit)

此处参数family规定了回归模型的类型:family="binomial"指适用于二元离散因变量(binary)。

2.逐步回归法

autoReg逐步回归法的参数,就是Final=T 还是F,Final=T 提供逐步回归分析结果。另外,还有threshold,设定P值来挑选单因素分析的变量开展多因素回归。

logreg4<-autoReg(logfit,uni=TRUE,threshold=0.05, final=T)   #final=T逐步回归
logreg4
logtable4<-myft(logreg4)

d795925d53fa951627cac06c4507d725.png

四、总结

通过对比,风暴统计与R语言先单后多的分析结果完全一致,风暴统计对于P值还有单独成列,结果更加清晰直观!这也是由于平台的构建依托于R代码进行分析。同时结果输出更加快捷,迅速,大家进行统计分析时不妨试一试!

1e08f19146f2ff7f02062644aed9b923.png

a2a4a26721b9f1ec326d8768e7d0dc95.png

56b5d40fe292cd25ffb1ff38439a1459.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/527362.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文整理】自动驾驶场景中Collaborative Methods多智能体协同感知文章创新点整理

Collaborative Methods F-CooperV2VNetWhen2commDiscoNetAttFusionV2X-ViTCRCNetCoBERTWhere2commDouble-MCoCa3D 这篇文章主要想整理一下&#xff0c;根据时间顺序这些文章是怎么说明自己的创新点的&#xff0c;又是怎么说明自己的文章比别的文章优越的。显然似乎很多文章只是…

C++指针(五)完结篇

个人主页&#xff1a;PingdiGuo_guo 收录专栏&#xff1a;C干货专栏 前言 相关文章&#xff1a;C指针&#xff08;一&#xff09;、C指针&#xff08;二&#xff09;、C指针&#xff08;三&#xff09;、C指针&#xff08;四&#xff09;万字图文详解&#xff01; 本篇博客是介…

【LLM】Advanced rag techniques: an illustrated overview

note 文章目录 noteAdvanced rag techniques: an illustrated overview基础RAG高级RAG分块和向量化(Chunking & Vectorisation)搜索索引(Search Index)1. 向量存储索引&#xff08;Vector Store Index&#xff09;2. 多层索引(Hierarchical Indices)3. 假设问题和HyDE(Hypo…

计算机网络——OSI网络层次模型

计算机网络——OSI网络层次模型 应用层表示层会话层传输层TCP和UDP协议复用分用 网络层数据链路层物理层OSI网络层次模型中的硬件设备MAC地址和IP地址MAC地址IP地址MAC地址和IP地址区别 OSI网络层次模型通信过程解释端到端点到点端到端和点到点的区别 我们之前简单介绍了一下网…

三、N元语法(N-gram)

为了弥补 One-Hot 独热编码的维度灾难和语义鸿沟以及 BOW 词袋模型丢失词序信息和稀疏性这些缺陷&#xff0c;将词表示成一个低维的实数向量&#xff0c;且相似的词的向量表示是相近的&#xff0c;可以用向量之间的距离来衡量相似度。 N-gram 统计语言模型是用来计算句子概率的…

【测试】优化软件测试:有效测试用例设计的关键

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a;Spring ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 前言 正文 等价类划分法&#xff1a; 边界值分析法&#xff1a; 因果图&#xff1a; 状态转换测试&#xff1a; 错误猜测法&#xff1a…

Day34-Linux网络管理4

Day34-Linux网络管理4 1. IP地址分类与子网划分基础1.1 什么是IP地址1.2 十进制与二进制的转换1.3 IP地址的分类1.4 私网地址和局域网地址 2. 通信类型3. 子网划分讲解3.1 为什么要划分子网&#xff1f;3.2 什么是子网划分&#xff1f;3.3 子网划分的作用&#xff1f;3.4 子网划…

16.Git从入门到进阶

一.Git 初识 1. 概念&#xff1a; 一个免费开源&#xff0c;分布式的代码版本控制系统&#xff0c;帮助开发团队维护代码 2. 作用&#xff1a; 记录代码内容&#xff0c;切换代码版本&#xff0c;多人开发时高效合并代码内容 3. 如何学&#xff1a; 个人本机使用&#xf…

WEBUI中的完美像素模式(Pixel Perfect)到底是什么意思

在webui的controlnet中&#xff0c;有个选项&#xff0c;叫做“完美像素模式”&#xff0c;英文为“pixel perfect mode”&#xff0c;有很多朋友在使用的时候不知道这个神奇的选项是否应该勾选上&#xff0c;所以有时候排查问题的时候&#xff0c;会反复的选择和去掉勾选&…

Django简易用户登入系统示例

Django简易用户登入系统示例 1&#xff09;添加url和函数的对应关系&#xff08;urls.py) urlpatterns [ path(login/, views.login), #login:url路径&#xff0c;views.login:对应的函数 ]2&#xff09;添加视图函数&#xff08;views.py) def login(req):if…

模型分析与偏差和方差

在创建一个机器学习系统&#xff0c;当我们的模型出现问题时&#xff0c;我们需要去找到最优的方式&#xff0c;能解决我们的问题&#xff0c;这时我们就需要会去诊断问题。 模型评估(Evaluating a model)&#xff1a; 1.训练集和测试集判断&#xff1a; 我们一般把数据组的前…

凌鲨微应用架构

微应用是静态网页加上凌鲨提供的扩展能力而形成的一种应用&#xff0c;主要特点是开发便捷&#xff0c;安全。 微应用架构 组件说明 名称 说明 微应用 webview窗口&#xff0c;显示web服务器上的页面 接口过滤器 根据权限配置,屏蔽非授权接口访问 接口提供者 tauri注入…