C语言自定义类型——结构体(struct)

【本节内容】

1. 结构体类型的声明

2. 结构体变量的创建和初始化

3. 结构体内存对齐

4. 结构体传参

5. 结构体实现位段

1. 结构体类型的声明

struct tag
{member-list;
}variable-list;

例如描述一个学生: 
struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
}; //分号不能丢

2. 结构体变量的创建和初始化 

#include <stdio.h>
struct Stu
{char name[20];//名字int age;//年龄char sex[5];//性别char id[20];//学号
};
int main()
{//按照结构体成员的顺序初始化struct Stu s = { "张三", 20, "男", "20230818001" };printf("name: %s\n", s.name);printf("age : %d\n", s.age);printf("sex : %s\n", s.sex);printf("id : %s\n", s.id);//按照指定的顺序初始化struct Stu s2 = { .age = 18, .name = "lisi", .id = "20230818002", .sex = "⼥printf("name: %s\n", s2.name);printf("age : %d\n", s2.age);printf("sex : %s\n", s2.sex);printf("id : %s\n", s2.id);return 0;
}

2.1 结构的特殊声明

在声明结构的时候,可以不完全的声明。

比如:

//匿名结构体类型
struct
{int a;char b;float c;
}x;
struct
{int a;char b;float c;
}a[20], *p;

上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?
//在上⾯代码的基础上,下⾯的代码合法吗?
p = &x;

编译器会把上⾯的两个声明当成完全不同的两个类型,所以是非法的。  
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使⽤⼀次。

2.2 结构的自引用

在结构中包含⼀个类型为该结构本⾝的成员是否可以呢?

比如,定义⼀个链表的节点:

struct Node
{int data;struct Node next;
};

上述代码正确吗?如果正确,那 sizeof(struct Node) 是多少? 

仔细分析,其实是不行的,因为一个结构体中再包含一个同类型的结构体变量,这样结构体变量的大小就会无穷的大,是不合理的。

别急,看我如何正确的使用自引用方式 

struct Node
{int data;struct Node* next;
}

在结构体自引用使用的过程中,夹杂了 typedef 对匿名结构体类型重命名,也容易引入问题,看看
下面的代码,可行吗?

typedef struct
{int data;Node* next;
}Node;

答案是不行的,因为Node是对前面的匿名结构体类型的重命名产生的,但是在匿名结构体内部提前使用Node类型来创建成员变量,这是不行的。
 解决方案如下:定义结构体不要使用匿名结构体了
typedef struct Node
{int data;struct Node* next;
}Node;

3. 结构体内存对齐

我们已经掌握了结构体的基本使用了。
现在我们深入讨论⼀个问题:计算结构体的大小。
这也是⼀个特别热门的考点: 结构体内存对齐

3.1 对齐规则

首先得掌握结构体的对齐规则:
1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处
2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。
对⻬数 = 编译器默认的⼀个对⻬数 与 该成员变量⼤⼩的较⼩值。
- VS 中默认的值为 8
- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的⼤⼩
3. 结构体总⼤⼩为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的
整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构
体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。

概念了解了,那么下面我们来做一到练习题 
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int main()
{struct S1{char c1;int i;char c2;};printf("%d\n", sizeof(struct S1));return 0;
}

 请问输出值是多少?

那么我们编译器跑一下看看 

那么问题来了,为什么是12? 

 

3.2 为什么存在内存对⻬?

⼤部分的参考资料都是这样说的:
1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2. 性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以用⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满⾜对齐,⼜要节省空间,如何做到:
让占⽤空间小的成员尽量集中在⼀起
例如:
struct S1{char c1;int i;char c2;};struct S2{char c1;char c2;int i;};
S1 S2 类型的成员⼀模⼀样,但是 S1 S2 所占空间的大小有了⼀些区别。

3.3 修改默认对⻬数 

#pragma 这个预处理指令,可以改变编译器的默认对⻬数。
#include <stdio.h>
#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{//输出的结果是什么?printf("%d\n", sizeof(struct S));return 0;
}

大家可以自行画图理解为什么输出结果是六6

PS:结构体在对⻬⽅式不合适的时候,我们可以⾃⼰更改默认对⻬数。 

 4. 结构体传参

代码示例:
struct S
{int data[1000];int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}
灵魂拷问:上⾯的 print1 print2 函数哪个好些?

答案是:⾸选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。
结论:
结构体传参的时候,要传结构体的地址。

 5. 结构体实现位段

结构体讲完就得讲讲结构体实现 位段 的能力。

5.1 什么是位段

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 intunsigned int signed int ,在C99中位段成员的类型也可以选择其他类型。
2. 位段的成员名后边有⼀个冒号和⼀个数字。

例如:

struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};
A就是一个位段类型。
那位段A所占内存的大小是多少?
 PS:冒号后面的数单位是bit,可以根据画图和结合结构体对齐算出结果噢~

答案如下:

5.2 位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
 例子:
struct S
{char a:3;char b:4;char c:5;char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;
//空间是如何开辟的?

(图片来源:比特就业课) 

5.3 位段的跨平台问题

1. int 位段被当成有符号数还是⽆符号数是不确定的。
2. 位段中最⼤位的数⽬不能确定。(16位机器最⼤16,32位机器最⼤32,写成27,在16位机器会
出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员比较大,⽆法容纳于第⼀个位段剩余的位时,是舍弃
剩余的位还是利用,这是不确定的。
总结:
跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

5.4 位段的应用

很多人会有疑问:位段能应用扎实哪里呢?感觉没见过啊!

下图是⽹络协议中,IP数据报的格式,我们可以看到其中很多的属性只需要⼏个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样⽹络传输的数据报大小也会较小⼀些,对⽹络的畅通是有帮助的。

 

(图片来源:比特就业课)

5.5 位段使⽤的注意事项

位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使⽤&操作符,这样就不能使用scanf直接给位段的成员输⼊值,只能是先输入放在⼀个变量中,然后赋值给位段的成员。
代码示例:
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{struct A sa = {0};scanf("%d", &sa._b);//这是错误的//正确的⽰范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

 PS:看到这里了,码字不易,给个一键三连鼓励一下吧!有不足或者错误之处欢迎在评论区指出!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/528017.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux中防火墙相关操作

一、查看防火墙状态 可通过两种方式查看防火墙状态&#xff0c;一种通过systemctl命令&#xff0c;另一种是通过firewall-cmd命令。 1、systemctl status firewalld 2、firewall-cmd --state 二、关闭防火墙 1、暂时关闭&#xff1a;设置暂时关闭防火墙将会在下次重启系统后失…

力扣530. 二叉搜索树的最小绝对差

思路1&#xff1a;中序遍历&#xff0c;递归排序成有序数组&#xff1b;因为是有序&#xff0c;只需要求相邻两个值的最小差值。 class Solution {ArrayList <Integer> list new ArrayList();int ans 100001;//题目最大 100000public int getMinimumDifference(TreeNo…

微信小程序跳转到其他小程序

有两种方式&#xff0c;如下&#xff1a; 一、appid跳转 wx.navigateToMiniProgram({appId: 目标小程序appid,path: 目标小程序页面路径,//不配的话默认是首页//develop开发版&#xff1b;trial体验版&#xff1b;release正式版envVersion: release, success(res) {// 打开成功…

大数据时代的数据保护:分布式存储系统的七大原则

第一原则&#xff1a;“灾”和“备”&#xff0c;区分容灾切换与数据备份的区别 管理对象 管理对象 防什么&#xff1f; 底层逻辑 核心评价指标 容灾切换 IT环境与业 物理灾难 …

登录凭证------

为什么需要登录凭证&#xff1f; web开发中&#xff0c;我们使用的协议http是无状态协议&#xff0c;http每次请求都是一个单独的请求&#xff0c;和之前的请求没有关系&#xff0c;服务器就不知道上一步你做了什么操作&#xff0c;我们需要一个办法证明我没登录过 制作登录凭…

GCN 翻译 - 3

3 SEMI-SUPERVISED NODE CLASSIFICATION 这里简单引入一个例子&#xff0c;利用图上信息传播的方式的一个灵活的模型&#xff0c;我们来解决一个图上节点分类的半监督问题。正如在introduction里面提到的&#xff0c;我们应用数据X和图结构的邻接矩阵锁提出的模型f(X,A)在图结…

鸿蒙Harmony应用开发—ArkTS声明式开发(通用属性:动态属性设置)

动态设置组件的属性&#xff0c;支持开发者在属性设置时使用if/else语法&#xff0c;且根据需要使用多态样式设置属性。 说明&#xff1a; 从API Version 11开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 attributeModifier attributeMo…

免费无水印视频素材哪里下载?这几个地方您要知道

哟哟&#xff0c;切克闹&#xff0c;视频剪辑达人们&#xff0c;是不是在视频素材的海洋里迷航了&#xff1f;别着急&#xff0c;今天我就给大家分享几个超实用的无水印短视频素材合集网&#xff0c;让你的创作更加得心应手&#xff0c;从此素材不再是你的烦恼 1&#xff0c;蛙…

选修-单片机作业第1/2次

第一次作业 第二次作业 1、51 系列单片机片内由哪几个部分组成&#xff1f;各个部件的最主要功能是什么&#xff1f; 51系列单片机的内部主要由以下几个部分组成&#xff0c;每个部件的主要功能如下&#xff1a; 1. **中央处理器&#xff08;CPU&#xff09;**&#xff1a;这是…

【STA】SRAM / DDR SDRAM 接口时序约束学习记录

1. SRAM接口 相比于DDR SDRAM&#xff0c;SRAM接口数据与控制信号共享同一时钟。在用户逻辑&#xff08;这里记作DUA&#xff08;Design Under Analysis&#xff09;&#xff09;将数据写到SRAM中去的写周期中&#xff0c;数据和地址从DUA传送到SRAM中&#xff0c;并都在有效时…

【动态规划】代码随想录算法训练营第四十四天 |完全背包,518. 零钱兑换 II , 377. 组合总和 Ⅳ (待补充)

完全背包理论基础 完全背包 有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i]&#xff0c;得到的价值是value[i] 。每件物品都有无限个&#xff08;也就是可以放入背包多次&#xff09;&#xff0c;求解将哪些物品装入背包里物品价值总和最大。 完全背包和…

Docker镜像及Dockerfile详解

1 Docker镜像用途 统一应用发布的标准格式支撑一个Docker容器的运行 2 Docker镜像的创建方法 基于已有镜像创建基于本地模板创建基于Dockerfile创建 &#xff08;实际环境中用的最多&#xff09; 2.1 基于已有镜像的创建 将容器里面运行的程序及运行环境打包生成新的镜像 …