【计算机视觉】二、图像形成:1、向量和矩阵的基本运算:线性变换与齐次坐标

文章目录

  • 一、向量和矩阵的基本运算
    • 1、简单变换
      • 1. 平移变换
      • 2. 缩放变换
      • 3. 旋转变换
      • 4. 一般线性变换
    • 2、齐次坐标
      • 0. 齐次坐标表示
      • 1. 2D点的齐次坐标变换
      • 2. 投影空间 ( x , y , w ) (x, y, w) (x,y,w)
      • 3. 2D直线的齐次坐标表示
        • a. 直线的参数方程表示
        • b. 直线的法向量和原点距离表示
      • 4. 叉积算子
      • 5. 平行线可以相交

一、向量和矩阵的基本运算

1、简单变换

x = [ x y ] \boldsymbol{x} =\begin{bmatrix}x\\y\end{bmatrix} x=[xy]

1. 平移变换

[ x ′ y ′ ] = [ x y ] + [ a b ] \begin{bmatrix}x'\\y'\end{bmatrix} = \begin{bmatrix}x\\y\end{bmatrix} + \begin{bmatrix}a\\b\end{bmatrix} [xy]=[xy]+[ab]
  将向量 [ a b ] \begin{bmatrix}a\\b\end{bmatrix} [ab]加到 [ x y ] \begin{bmatrix}x\\y\end{bmatrix} [xy]上,得到平移后的新向量 [ x ′ y ′ ] = [ x + a y + b ] \begin{bmatrix}x'\\y'\end{bmatrix} = \begin{bmatrix}x+a\\y+b\end{bmatrix} [xy]=[x+ay+b]。其中 a a a b b b分别为x方向和y方向的平移量

2. 缩放变换

[ x ′ y ′ ] = [ s x 0 0 s y ] [ x y ] = [ s x x s y y ] \begin{bmatrix}x'\\y'\end{bmatrix} = \begin{bmatrix}s_x & 0\\0 & s_y\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}s_xx\\s_yy\end{bmatrix} [xy]=[sx00sy][xy]=[sxxsyy]
  通过缩放矩阵 [ s x 0 0 s y ] \begin{bmatrix}s_x & 0\\0 & s_y\end{bmatrix} [sx00sy]乘以 [ x y ] \begin{bmatrix}x\\y\end{bmatrix} [xy],可以得到缩放后的向量 [ x ′ y ′ ] = [ s x x s y y ] \begin{bmatrix}x'\\y'\end{bmatrix} = \begin{bmatrix}s_xx\\s_yy\end{bmatrix} [xy]=[sxxsyy]。其中 s x s_x sx s y s_y sy分别为x方向和y方向的缩放比例

3. 旋转变换

[ x ′ y ′ ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ x y ] \begin{bmatrix}x'\\y'\end{bmatrix} = \begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} [xy]=[cosθsinθsinθcosθ][xy]
  通过旋转矩阵 [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] \begin{bmatrix}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{bmatrix} [cosθsinθsinθcosθ]乘以 [ x y ] \begin{bmatrix}x\\y\end{bmatrix} [xy],可以得到绕原点逆时针旋转 θ \theta θ角度后的向量 [ x ′ y ′ ] \begin{bmatrix}x'\\y'\end{bmatrix} [xy]

4. 一般线性变换

[ x ′ y ′ ] = [ a b c d ] [ x y ] = [ a x + b y c x + d y ] \begin{bmatrix}x'\\y'\end{bmatrix} = \begin{bmatrix}a & b\\c & d\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix} = \begin{bmatrix}ax+by\\cx+dy\end{bmatrix} [xy]=[acbd][xy]=[ax+bycx+dy]
  通过一个2x2变换矩阵 [ a b c d ] \begin{bmatrix}a & b\\c & d\end{bmatrix} [acbd]乘以 [ x y ] \begin{bmatrix}x\\y\end{bmatrix} [xy],可以得到一个新的变换后向量 [ x ′ y ′ ] = [ a x + b y c x + d y ] \begin{bmatrix}x'\\y'\end{bmatrix} = \begin{bmatrix}ax+by\\cx+dy\end{bmatrix} [xy]=[ax+bycx+dy],这个变换矩阵可以表示缩放、旋转、错切等线性变换的组合

2、齐次坐标

0. 齐次坐标表示

  在使用齐次坐标表示时,我们将n维欧几里得空间中的点 ( x 1 , x 2 , … , x n ) (x_1, x_2, \dots, x_n) (x1,x2,,xn)表示为 ( n + 1 ) (n+1) (n+1)维的齐次坐标形式 ( x 1 , x 2 , … , x n , 1 ) (x_1, x_2, \dots, x_n, 1) (x1,x2,,xn,1),在原始坐标的基础上添加一个1作为最后一个分量。

  • 将2D点用齐次坐标 [ x y 1 ] \begin{bmatrix}x\\y\\1\end{bmatrix} xy1表示,即在笛卡尔坐标 [ x y ] \begin{bmatrix}x\\y\end{bmatrix} [xy]的基础上添加一个1作为最后一个分量;
  • 将3D点用齐次坐标 [ x y z 1 ] \begin{bmatrix}x\\y\\z\\1\end{bmatrix} xyz1表示,即在笛卡尔坐标 [ x y z ] \begin{bmatrix}x\\y\\z\end{bmatrix} xyz的基础上添加一个1作为最后一个分量。

1. 2D点的齐次坐标变换

  • 变换矩阵:
    [ a b c d e f 0 0 1 ] \begin{bmatrix}a & b & c\\d & e & f\\0 & 0 & 1\end{bmatrix} ad0be0cf1

  • 变换结果
    [ x ′ y ′ 1 ] = [ a b c d e f 0 0 1 ] [ x y 1 ] = [ a x + b y + c d x + e y + f 1 ] \begin{bmatrix}x'\\y'\\1\end{bmatrix} = \begin{bmatrix}a & b & c\\d & e & f\\0 & 0 & 1\end{bmatrix}\begin{bmatrix}x\\y\\1\end{bmatrix}=\begin{bmatrix}ax+by+c\\dx+ey+f\\1\end{bmatrix} xy1=ad0be0cf1xy1=ax+by+cdx+ey+f1

该变换矩阵包含了三个部分:

  • 平移分量 [ c f ] \begin{bmatrix}c\\f\end{bmatrix} [cf]
  • 旋转分量( [ a b d e ] \begin{bmatrix}a & b\\d & e\end{bmatrix} [adbe]构成的2x2子矩阵)
  • 缩放分量(a, b, d, e的大小)
    • 当这些元素的值大于1时,会放大相应方向的坐标;小于1时,会缩小。

2. 投影空间 ( x , y , w ) (x, y, w) (x,y,w)

  引入一个三维投影空间,由 x x x y y y w w w三个坐标构成,用 [ x y w ] \begin{bmatrix}x\\y\\w\end{bmatrix} xyw表示。
其中 w = 0 w=0 w=0表示无穷远的点,即所有投影线的汇聚点所在位置。
在这里插入图片描述

  • 左图展示了透视投影(Perspective projection)的情况,所有投影线从场景中的点汇聚于一个无穷远点,这种投影方式可以提供深度信息和真实的景深感。
    • 透视投影可以提供更真实的视觉效果,表达式为:

[ x ′ y ′ w ′ ] = [ a b c d e f g h i ] [ x y w ] \begin{bmatrix}x'\\y'\\w'\end{bmatrix} = \begin{bmatrix}a&b&c\\d&e&f\\g&h&i\end{bmatrix}\begin{bmatrix}x\\y\\w\end{bmatrix} xyw=adgbehcfixyw

  • 右图展示了正交投影(Orthographic projection)的情况,投影线都是平行的,没有汇聚点,无法获得真实的景深感,但可以保持投影后物体的形状不变形。
    • 正交投影常用于工程制图等需要保持形状的场合,表达式为:
      [ x ′ y ′ w ′ ] = [ a b 0 c d 0 0 0 1 ] [ x y w ] \begin{bmatrix}x'\\y'\\w'\end{bmatrix} = \begin{bmatrix}a&b&0\\c&d&0\\0&0&1\end{bmatrix}\begin{bmatrix}x\\y\\w\end{bmatrix} xyw=ac0bd0001xyw

  这种投影空间和投影变换在计算机图形学中被广泛使用,用于将三维物体投影到二维平面上进行显示。

3. 2D直线的齐次坐标表示

a. 直线的参数方程表示

l = ( a , b , c ) x ⋅ l = a x + b y + c = 0 l = (a, b, c)\\x\cdot l = ax + by + c = 0 l=(a,b,c)xl=ax+by+c=0其中 ( a , b , c ) (a, b, c) (a,b,c)是直线的系数,任意一点 ( x , y ) (x, y) (x,y)代入方程,结果为0,则该点位于该直线上。

b. 直线的法向量和原点距离表示

在这里插入图片描述

l = ( n x , n y , d ) = ( n ⃗ , d ) with  ∥ n ⃗ ∥ = 1 l = (n_x, n_y, d) = (\vec{n}, d) \quad \text{with} \ \|\vec{n}\| = 1 l=(nx,ny,d)=(n ,d)with n =1其中 n ⃗ = ( n x , n y ) = ( cos ⁡ θ , sin ⁡ θ ) \vec{n} = (n_x, n_y) = (\cos\theta, \sin\theta) n =(nx,ny)=(cosθ,sinθ)表示直线的法向量,即垂直于直线方向的单位向量, d d d表示直线到原点的有符号距离。

这种表示直观地描述了直线的性质:

  • n ⃗ \vec{n} n 给出了直线的方向
  • d d d给出了直线到原点的距离,取正负号表示直线在原点的两侧

法向量和原点距离表示对于直线的各种几何运算都很有用,例如求直线交点、判断点和直线的位置关系等。通过矩阵变换,可以很自然地对直线进行旋转、平移等操作。

4. 叉积算子

  1. 两条直线的表示:
    给定两条直线 l ~ 1 \tilde{l}_1 l~1 l ~ 2 \tilde{l}_2 l~2的齐次坐标表示。
  2. 交点的计算:
    两条直线 l ~ 1 \tilde{l}_1 l~1 l ~ 2 \tilde{l}_2 l~2的交点 x ~ \tilde{x} x~可以通过它们的外积(叉积)求得:
    x ~ = l ~ 1 × l ~ 2 \tilde{x} = \tilde{l}_1 \times \tilde{l}_2 x~=l~1×l~2
    其中,外积的计算方式为:
    l ~ 1 = ( x ~ 1 , y ~ 1 , a ~ 1 ) \tilde{l}_1 = (\tilde{x}_1, \tilde{y}_1, \tilde{a}_1) l~1=(x~1,y~1,a~1) l ~ 2 = ( x ~ 2 , y ~ 2 , a ~ 2 ) \tilde{l}_2 = (\tilde{x}_2, \tilde{y}_2, \tilde{a}_2) l~2=(x~2,y~2,a~2) x ~ = l ~ 1 × l ~ 2 = \tilde{x} = \tilde{l}_1 \times \tilde{l}_2 = x~=l~1×l~2=

这种利用直线的齐次坐标表示求交点的方法,可以自然地推广到三维空间,求两条三维直线或平面的交点。同理,在三维情况下,交点坐标为两个直线或平面的齐次坐标外积。

5. 平行线可以相交

  • 两条直线在非齐次坐标系下的方程组表示:
    { A x + B y + C = 0 A x + B y + D = 0 \begin{cases} Ax + By + C = 0\\ Ax + By + D = 0 \end{cases} {Ax+By+C=0Ax+By+D=0
  • 将这两条直线方程转换为齐次坐标表示:
    { A x w + B y w + C = 0 A x w + B y w + D = 0 ⟺ { A x + B y + C w = 0 A x + B y + D w = 0 \begin{cases} A \dfrac{x}{w} + B \dfrac{y}{w} + C = 0\\ A \dfrac{x}{w} + B \dfrac{y}{w} + D = 0 \end{cases} \quad\iff\quad \begin{cases} Ax + By + Cw = 0\\ Ax + By + Dw = 0 \end{cases} Awx+Bwy+C=0Awx+Bwy+D=0{Ax+By+Cw=0Ax+By+Dw=0

在这种表示下,两条直线的齐次坐标分别为 ( A , B , C ) (A, B, C) (A,B,C) ( A , B , D ) (A, B, D) (A,B,D)

  • 通过分析可以发现,当 w = 0 w=0 w=0时,对应的是无穷远点,两条直线在这个点处相交

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539579.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

在Linux/Ubuntu/Debian中使用7z压缩和解压文件

要在 Ubuntu 上使用 7-Zip 创建 7z 存档文件,你可以使用“7z”命令行工具。 操作方法如下: 安装 p7zip: 如果你尚未在 Ubuntu 系统上安装 p7zip(7-Zip 的命令行版本),你可以使用以下命令安装它:…

SVN修改已提交版本的注释

目录 一、需求分析 二、问题分析 三、解决办法 一、需求分析 ​开发过程中,在SVN提交文件后,发现注释写的不完整或不够明确,想再修改之前的注释文字​。 使用环境: SVN服务器操作系统:Ubuntu 20.04.6 LTS SVN版本&…

串口协议、I2C协议、SPI协议总结

目录 一、串口协议 1.串口基本认知 2.RS-232 3.RS-422 4.RS-485 (1)RS232电平: (2)TTL电平: 6.串口51开发板实现 (1)软件自动配置: (2)…

React——react 的基本使用

前提:安装全局的脚手架,通过create-creat-app 项目名,我们创建好一个新项目,cd进去,通过npm start去运行该项目 注意:简单看下demo的配置,在根目录我们可以看到,没有任何webpack的…

windows 安装 gitlab-runner CICD

点击搜索图标 手动输入PowerShell, 右键点击管理员权限打开, 一、安装 安装 gitlab runner 文档参考地址 1、下载exe执行文件 我这里是 win64 https://gitlab-runner-downloads.s3.amazonaws.com/latest/binaries/gitlab-runner-windows-amd64.exe 2、创建 gitla…

基于Java的海南旅游景点推荐系统(Vue.js+SpringBoot)

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户端2.2 管理员端 三、系统展示四、核心代码4.1 随机景点推荐4.2 景点评价4.3 协同推荐算法4.4 网站登录4.5 查询景点美食 五、免责说明 一、摘要 1.1 项目介绍 基于VueSpringBootMySQL的海南旅游推荐系统&#xff…

大话设计模式——6.工厂方法模式(Factory Method Pattern)

1.介绍 工厂方法模式也称工厂模式,是简单工厂模式的进一步抽象。定义一个用于创建对象的接口,使一个类的实例化延迟到其子类,让子类决定实例化哪个类。通过工厂父类定义负责创建产品的公共接口,通过子类确定所需要创建的类型。 属…

Spring, SpringBoot, SpringCloud,微服务

1,SSM (Spring+SpringMVC+MyBatis) SSM框架集由Spring、MyBatis两个开源框架整合而成(SpringMVC是Spring中的部分内容),常作为数据源较简单的web项目的框架。 Spring MVC 是 Spring 提供的一个基于 MVC 设计模式的轻量级 Web 开发框架,本质上相当于 Servlet,Controlle…

力扣日记3.14-【贪心算法篇】376. 摆动序列

力扣日记:【贪心算法篇】376. 摆动序列 日期:2024.3.14 参考:代码随想录、力扣 376. 摆动序列 题目描述 难度:中等 如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(…

【matlab】如何将.mat文件与.nii文件互转

【matlab】如何将.mat文件与.nii文件互转 .mat转为.nii文件 有时候代码需要读取的是.nii文件,但是如何现有的数据是.mat格式,需要将.mata转化为.nii文件 1、先加载.mat文件 % 加载.mat文件 load(your_mat_file.mat); % 请将your_mat_file.mat替换为实…

微软远程桌面RD Client:连接与管理的新境界

微软远程桌面RD Client:连接与管理的新境界 在数字化日益深入的今天,远程工作与管理已成为许多企业和个人的首选。微软远程桌面RD Client作为一款功能强大的远程连接工具,凭借其出色的性能和便捷的操作,受到了广泛的关注和好评。…

Edge-TTS:微软推出的,免费、开源、支持多种中文语音语色的AI工具

项目地址:rany2/edge-tts: Use Microsoft Edges online text-to-speech service from Python WITHOUT needing Microsoft Edge or Windows or an API key (github.com) Edge-TTS是由微软推出的文本转语音Python库,通过微软Azure Cognitive Services转化文…