《Python深度学习》阅读笔记

以下是《Python深度学习》一书中学习过程中记录的一些重要的专属名词和概念:

一、概念

  1. 深度学习(Deep Learning):指使用多层神经网络进行机器学习的技术。
  2. 神经网络(Neural Network):一种模仿生物神经网络工作原理的机器学习模型。
  3. 前向传播(Forward Propagation):在神经网络中,输入数据从输入层通过隐藏层,最终到达输出层的过程。
  4. 反向传播(Backpropagation):在神经网络中,根据输出层的错误来调整网络中权重的过程。
  5. 激活函数(Activation Function):用于引入非线性特性到神经网络中的函数,如ReLU、Sigmoid和Tanh等。
  6. 批量标准化(Batch Normalization):一种加速神经网络训练的方法,通过对每一批数据进行归一化处理来改善网络的性能。
  7. 损失函数(Loss Function):用于衡量模型预测结果与真实结果之间的差距。
  8. 优化器(Optimizer):用于调整模型中的权重和偏置,以最小化损失函数。
  9. 学习率(Learning Rate):优化器在调整权重和偏置时的步长。
  10. Dropout(Dropout):一种正则化技术,通过随机忽略部分神经元来防止过拟合。
  11. 过拟合(Overfitting):模型在训练数据上表现很好,但在测试数据上表现不佳的现象。
  12. 欠拟合(Underfitting):模型在训练数据和测试数据上都表现不佳的现象。
  13. 卷积神经网络(Convolutional Neural Network,CNN):一种专门用于处理图像数据的神经网络。
  14. 循环神经网络(Recurrent Neural Network,RNN):一种能够处理序列数据的神经网络,如文本和时间序列数据。
  15. 长短期记忆网络(Long Short-Term Memory,LSTM):一种特殊的循环神经网络,用于处理需要理解序列中长距离依赖关系的问题。
  16. 转化器(Transformer):一种基于自注意力机制的深度学习模型,被广泛应用于自然语言处理任务。
  17. 自注意力机制(Self-Attention Mechanism):一种让神经网络关注输入序列中不同位置的信息,从而更好地理解序列数据的技术。
  18. 验证集(Validation Set):从原始数据中划分出来的一组数据,用于调整模型的超参数和防止过拟合。
  19. 测试集(Test Set):从原始数据中划分出来的一组数据,用于评估模型的性能。
  20. 梯度消失问题(Vanishing Gradient Problem):在深度神经网络中,梯度在反向传播过程中会逐渐变小,导致网络中的早期层无法从训练过程中学习到有用的信息。
  21. 梯度爆炸问题(Exploding Gradient Problem):与梯度消失问题相反,梯度在反向传播过程中可能会变得非常大,导致模型训练不稳定甚至崩溃。
  22. 特征工程(Feature Engineering):通过对数据进行预处理、转换和特征选择等操作,提高机器学习模型性能的过程。
  23. 迁移学习(Transfer Learning):利用在大规模数据集上预训练的模型来帮助解决类似问题的技术。
  24. Keras:一个高级神经网络API,支持多种深度学习框架,包括TensorFlow、CNTK和Theano等。
  25. TensorFlow:一个流行的深度学习框架,由Google开发并维护。
  26. PyTorch:另一个流行的深度学习框架,由Facebook AI Research开发并维护。
  27. Keract:Keras的CPU和GPU张量操作库,提供更高效的张量操作功能。
  28. Jupyter Notebook:一个Web应用程序,允许创建和共享包含实时代码、注释和输出在内的文档。
  29. Colab:Google开发的免费Jupyter notebook服务,提供GPU加速功能。
  30. Docker:一个开源容器化平台,允许打包、分发和运行应用程序及其依赖项。
  31. TensorBoard:TensorFlow的可视化工具,用于监视训练过程、可视化和理解模型。
  32. ONNX:开放神经网络交换格式,用于表示深度学习模型。它支持多种深度学习框架的模型转换,包括TensorFlow、PyTorch和其他框架。
  33. NVIDIA GPU:专为深度学习应用设计的图形处理器,提供强大的计算能力和高内存带宽。
  34. TPU(Tensor Processing Unit):Google专为机器学习任务设计的处理器,具有高吞吐量、低延迟和节能等特性。
  35. GPU Cloud Provider:提供GPU云服务以支持深度学习应用的云服务提供商,如Google Cloud、Amazon Web Services(AWS)和Microsoft Azure等。
  36. OpenAI API:OpenAI是一家提供人工智能模型的机构,其API允许用户通过简单的接口访问其强大的深度学习模型。
  37. GPT(Generative Pre-trained Transformer):一种基于Transformer模型的自回归语言模型,被用于生成文本和回答自然语言问题。
  38. BERT(Bidirectional Encoder Representations from Transformers):一种基于Transformer模型的预训练语言模型,被用于理解自然语言文本的含义和上下文。
  39. Transformer模型:一种基于自注意力机制的深度学习模型,被广泛应用于自然语言处理任务。
  40. 自动编码器(Autoencoder):一种神经网络架构,用于将输入数据编码成低维空间表示,然后再从低维空间表示还原成原始数据。
  41. 生成对抗网络(Generative Adversarial Networks,GAN):一种神经网络架构,由一个生成器网络和一个判别器网络组成,通过竞争来提高双方的生成和判别能力。
  42. 变分自编码器(Variational Autoencoder,VAE):一种结合了潜变量模型的神经网络架构,用于生成数据和重构数据。
  43. 强化学习(Reinforcement Learning):一种通过与环境的交互来学习最优行为的机器学习方法。
  44. Q-Learning:一种用于解决强化学习问题的算法,通过学习动作的价值来选择最优动作。
  45. TensorFlow Serving:TensorFlow的模型部署框架,用于将训练好的模型转换成服务部署到生产环境。
  46. TensorFlow Lite:TensorFlow的移动端和嵌入式设备支持框架,用于在这些设备上运行TensorFlow模型。
  47. TensorFlow.js:TensorFlow的JavaScript库,用于在浏览器和Node.js环境中运行TensorFlow模型。
  48. TensorBoardX:使用TensorFlow 1.x API的TensorBoard替代方案,支持Keras 2.x和PyTorch。
  49. ONNX Runtime:ONNX的模型运行时,支持在多种设备上运行ONNX格式的模型。

二、详解

2.1 深度学习

在这里插入图片描述

深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层中学习,这些层对应于越来越有意义的表示。

深度学习之“深度”并不是说这种方法能够获取更深层次的理解,而是指一系列连续的表示层。数据模型所包含的层数被称为该模型的深度( depth)。

2.2 神经网络

在深度学习中,这些分层表示是通过叫作神经网络( neural network)的模型学习得到的。
神经网络的结构是逐层堆叠。“神经网络”这一术语来自于神经生物学,然而,虽然深度学习的
一些核心概念是从人们对大脑(特别是视觉皮层)的理解中汲取部分灵感而形成的,但深度学
习模型并不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型的学习机制相同。
你可能读过一些科普文章,这些文章宣称深度学习的工作原理与大脑相似或者是在模拟大脑,
但事实并非如此。对于这一领域的新人来说,如果认为深度学习与神经生物学存在任何关系,
那将使人困惑,只会起到反作用。

2.3 前向传播

在这里插入图片描述

我们为图中的“输入节点”(输入 x、目标 y_true、 w 和 b)赋值。我们将这些值传入图中
所有节点,从上到下,直到 loss_val。这就是前向传播过程

2.4 反向传播

在这里插入图片描述

下面我们“反过来”看这张图。对于图中从 A 到 B 的每条边,我们都画一条从 B 到 A 的反向边,
并提出问题:如果 A 发生变化,那么 B 会怎么变?也就是说, grad(B, A) 是多少?我们在每
条反向边上标出这个值。这个反向图表示的是反向传播过程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/543781.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

『scrapy爬虫』05. 使用管道将数据写入mysql(详细注释步骤)

目录 1. 新建管道类,并启用2. 准备好mysql数据库新建表3. 实现管道写入数据库的代码测试一下 总结 欢迎关注 『scrapy爬虫』 专栏,持续更新中 欢迎关注 『scrapy爬虫』 专栏,持续更新中 如果对mysql和python不熟悉可看专栏【Python之pymysql库学习】 1.…

移动云行动:5.5G技术引领数字化转型

刚刚结束的全国两会上,有人大代表建议应尽快发挥5G-A(5.5G)优势,加快试点城市布局。此前,中国移动已宣布将在300多个城市启动5.5G商用部署。在通信技术的历史长河中,4G改变了我们的生活方式,而5…

华为数通方向HCIP-DataCom H12-821题库(多选题:161-180)

第161题 以下关于IPv6优势的描述,正确的是哪些项? A、底层自身携带安全特性 B、加入了对自动配置地址的支持,能够无状态自动配置地址 C、路由表相比IPv4会更大,寻址更加精确 D、头部格式灵活,具有多个扩展头 【参考答案】ABD 【答案解析】 第162题 在OSPF视图下使用Filt…

强化学习------DDPG算法(附pytorch代码)

目录 一、前言二、基本原理2.1、经验回放2.2、更新过程2.2.1、Critic网络更新过程2.2.2、Actor网络更新过程2.2.3、 目标网络的更新 2.3、噪音探索 三、算法代码实现四、训练示例4.1、实现效果 一、前言 Deep Deterministic Policy Gradient (DDPG)算法是DeepMind团队提出的一…

浅谈性能测试中的基准测试

在性能测试中有一种测试类型叫做基准测试。这篇文章,就聊聊关于基准测试的一些事儿。 1、定义 通过设计合理的测试方法,选用合适的测试工具和被测系统,实现对某个特定目标场景的某项性能指标进行定量的和可对比的测试。 2、特质 ①、可重…

STL——map set

文章将解决一下几个问题: 1.什么是set 2.什么是map 3.set应用场景 4.map应用场景 序列式容器和关联式容器 数据结构有序列式容器和关联式容器,序列式容器一般有vector,list,deque…,但关联式容器中就有map,关联式容器也是用来存…

java基础-异常、常用类

异常 Exception 如果程序员认为一段代码可能出现异常/问题,try-catch异常处理机制来解决,从而保证程序的健壮性。将该代码块–》选中–》快捷键 ctrlaltt–》选中 try-catch 常见的一些异常~ 异常体系图,体现了继承和实现关系。&#xff08…

【中等】保研/考研408机试-二叉树相关

目录 一、基本二叉树 1.1结构 1.2前序遍历(注意三种遍历中Visit所在的位置) 1.2中序遍历 1.3后序遍历 二、真题实战 2.1KY11 二叉树遍历(清华大学复试上机题)【较难】 2.2KY212 二叉树遍历二叉树遍历(华中科技大…

[蓝桥杯练习题]确定字符串是否包含唯一字符/确定字符串是否是另一个的排列

确定字符串是否包含唯一字符 #include<bits/stdc.h> using namespace std; int main(){ios::sync_with_stdio(0);cin.tie(nullptr);cout.tie(nullptr);map<char,int>m;string s;cin>>s;for(int i0;i<s.size();i){if(isalpha(s[i]))s[i]tolower(s[i]);if(…

电机参数辨识算法(2)——基于高频注入的磁链辨识策略

电机参数辨识算法&#xff08;1&#xff09;——基于高频注入的电感辨识策略-CSDN博客https://blog.csdn.net/m0_46903653/article/details/136722750?spm1001.2014.3001.5501上一期已经讲过了电感辨识方法。 今天这是参数辨识的第二期&#xff0c;今天来简单看看磁链的辨识。…

torch.nn.Conv2d()与slim.conv2d()函数参数详解

目录 1. tf.nn.conv2d()函数1.1 input&#xff1a;1.2 filter&#xff1a;1.3 strides&#xff1a;1.4 padding&#xff1a; 2.tf.contrib.slim.conv2d()函数3. torch.nn.Conv2d()函数3.1 官方例子&#xff1a; 1. tf.nn.conv2d()函数 tensorflow构建网络模型时常用的卷积函数…

Redis应用与原理(一)

更好的阅读体验 \huge{\color{red}{更好的阅读体验}} 更好的阅读体验 缓存发展史 缓存经典场景 在没有引入缓存前&#xff0c;为了应对大量流量&#xff0c;一般采用&#xff1a; LVS 代理Nginx 做负载均衡搭建 Tomcat 集群 这种方式下&#xff0c;随着访问量的增大&#xf…