深度强化学习(六)(改进价值学习)
一.经验回放
把智能体与环境交互的记录(即经验)储存到 一个数组里,事后反复利用这些经验训练智能体。这个数组被称为经验回放数组(replay buffer)。
具体来说, 把智能体的轨迹划分成 ( s t , a t , r t , s t + 1 ) \left(s_t, a_t, r_t, s_{t+1}\right) (st,at,rt,st+1) 这样的四元组, 存入一个数组。需要人为指定数组的大小 (记作 b b b )。数组中只保留最近 b b b 条数据; 当数组存满之后, 删除掉最旧的数据。数组的大小 b b b 是个需要调的超参数, 会影响训练的结果。通常设置 b b b 为 1 0 5 ∼ 1 0 6 10^5 \sim 10^6 105∼106 。
在实践中,要等回放数组中有足够多的四元组时,才开始做经验回放更新DQN。
- 经验回放的一个好处在于打破序列的相关性。训练 DQN 的时候, 每次我们用一个四元组对 DQN 的参数做一次更新。我们希望相邻两次使用的四元组是独立的。然而当智能体收集经验的时候, 相邻两个四元组 ( s t , a t , r t , s t + 1 ) \left(s_t, a_t, r_t, s_{t+1}\right) (st,at,rt,st+1) 和 ( s t + 1 , a t + 1 , r t + 1 , s t + 2 ) \left(s_{t+1}, a_{t+1}, r_{t+1}, s_{t+2}\right) (st+1,at+1,rt+1,st+2) 有很强的相关性。依次使用这些强关联的四元组训练 DQN, 效果往往会很差。经验回放每次从数组里随机抽取一个四元组, 用来对 DQN 参数做一次更新。这样随机抽到的四元组都是独立的, 消除了相关性。
- 经验回放的另一个好处是重复利用收集到的经验, 而不是用一次就丢弃, 这样可以用更少的样本数量达到同样的表现。
需要注意, 并非所有的强化学习方法都允许重复使用过去的经验。经验回放数组里的数据全都是用行为策略 (behavior policy) 控制智能体收集到的。在收集经验同时, 我们也在不断地改进策略。策略的变化导致收集经验时用的行为策略是过时的策略, 不同于当前我们想要更新的策略——即目标策略(target policy)。也就是说,经验回放数组中的经验通常是过时的行为策略收集的, 而我们真正想要学的目标策略不同于过时的行为策略。
有些强化学习方法允许行为策略不同于目标策略。这样的强化学习方法叫做异策略 (off-policy)。比如 Q \mathrm{Q} Q 学习、确定策略梯度 (DPG) 都属于异策略。由于它们允许行为策略不同于目标策略, 过时的行为策略收集到的经验可以被重复利用。经验回放适用于异策略。
二.优先经验回放
优先经验回放给每个四元组一个权重, 然后根据权重做非均匀随机抽样。如果 DQN 对 ( s j , a j ) \left(s_j, a_j\right) (sj,aj) 的价值判断不准确, 即 Q ( s j , a j ; w ) Q\left(s_j, a_j ; \boldsymbol{w}\right) Q(sj,aj;w) 离 Q ⋆ ( s j , a j ) Q_{\star}\left(s_j, a_j\right) Q⋆(sj,aj) 较远,则四元组 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 应当有较高的权重。
因此, 要是 ∣ Q ( s j , a j ; w ) − Q ⋆ ( s j , a j ) ∣ \left|Q\left(s_j, a_j ; \boldsymbol{w}\right)-Q_{\star}\left(s_j, a_j\right)\right| ∣Q(sj,aj;w)−Q⋆(sj,aj)∣ 较大, 则应该给样本 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 较高的权重。然而实际上我们不知道 Q ⋆ Q_{\star} Q⋆, 因此无从得知 ∣ Q ( s j , a j ; w ) − Q ⋆ ( s j , a j ) ∣ \left|Q\left(s_j, a_j ; \boldsymbol{w}\right)-Q_{\star}\left(s_j, a_j\right)\right| ∣Q(sj,aj;w)−Q⋆(sj,aj)∣ 。不妨把它替换成 TD 误差。回忆一下, TD 误差的定义是:
δ j ≜ Q ( s j , a j ; w now ) − [ r t + γ ⋅ max a ∈ A Q ( s j + 1 , a ; w now ) ] ⏟ 即 TD 目标 . \delta_j \triangleq Q\left(s_j, a_j ; \boldsymbol{w}_{\text {now }}\right)-\underbrace{\left[r_t+\gamma \cdot \max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}_{\text {now }}\right)\right]}_{\text {即 TD 目标 }} . δj≜Q(sj,aj;wnow )−即 TD 目标 [rt+γ⋅a∈AmaxQ(sj+1,a;wnow )].
如果 TD 误差的绝对值 ∣ δ j ∣ \left|\delta_j\right| ∣δj∣ 大, 说明 DQN 对 ( s j , a j ) \left(s_j, a_j\right) (sj,aj) 的真实价值的评估不准确, 那么应该给 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 设置较高的权重。
优先经验回放对数组里的样本做非均匀抽样。四元组 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 的权重是 TD 误差的绝对值 ∣ δ j ∣ \left|\delta_j\right| ∣δj∣ 。有两种方法设置抽样概率。一种抽样概率是:
p j ∝ ∣ δ j ∣ + ϵ . p_j \propto\left|\delta_j\right|+\epsilon . pj∝∣δj∣+ϵ.
此处的 ϵ \epsilon ϵ 是个很小的数, 防止抽样概率接近零, 用于保证所有样本都以非零的概率被抽到。另一种抽样方式先对 ∣ δ j ∣ \left|\delta_j\right| ∣δj∣ 做降序排列, 然后计算
p j ∝ 1 rank ( j ) . p_j \propto \frac{1}{\operatorname{rank}(j)} . pj∝rank(j)1.
此处的 rank ( j ) \operatorname{rank}(j) rank(j) 是 ∣ δ j ∣ \left|\delta_j\right| ∣δj∣ 的序号。大的 ∣ δ j ∣ \left|\delta_j\right| ∣δj∣ 的序号小, 小的 ∣ δ j ∣ \left|\delta_j\right| ∣δj∣ 的序号大。两种方式的原理是一样的, ∣ δ j ∣ \left|\delta_j\right| ∣δj∣ 大的样本被抽样到的概率大。
优先经验回放做非均匀抽样, 四元组 ( s j , a j , r j , s j + 1 ) \left(s_j, a_j, r_j, s_{j+1}\right) (sj,aj,rj,sj+1) 被抽到的概率是 p j p_j pj 。对于那些更重要的样本,被抽中的次数更多,参数更新的次数越多,为使更新效果更好可以适当减小学习率,适当减小学习率可以使得更新方向更精准,同时也使样本的被抽中得概率 p j p_j pj不会剧烈下降,保证更新次数。可以这样设置学习率:
α j = α ( b ⋅ p j ) β , \alpha_j=\frac{\alpha}{\left(b \cdot p_j\right)^\beta}, αj=(b⋅pj)βα,
$\text { 此处的 } b \text { 是经验回放数组中样本的总数, } \beta \in(0,1) \text { 是个需要调的超参数 } $
三.高估问题
设 x 1 , ⋯ , x d x_1, \cdots, x_d x1,⋯,xd 为任意 d d d 个实数。往 x 1 x_1 x1, ⋯ , x d \cdots, x_d ⋯,xd 中加入任意均值为零的随机噪声, 得到 Z 1 , ⋯ , Z d Z_1, \cdots, Z_d Z1,⋯,Zd, 它们是随机变量, 随机性来源于随机噪声。我们有如下不等式
E [ max ( Z 1 , ⋯ , Z d ) ] ≥ max ( x 1 , ⋯ , x d ) \mathbb{E}\left[\max \left(Z_1, \cdots, Z_d\right)\right] \geq \max \left(x_1, \cdots, x_d\right) E[max(Z1,⋯,Zd)]≥max(x1,⋯,xd)
proof:利用琴生不等式,我们有 E [ f ( x ) ] ≥ f ( E [ x ] ) \Bbb E[f(x)]\geq f(\Bbb E[x]) E[f(x)]≥f(E[x]),如果 f ( x ) f(x) f(x)是一个凸函数。而 max ( x 1 , x 2 , … , x d ) \text{max}(x_1,x_2,\ldots,x_d) max(x1,x2,…,xd)显然是凸的。
这个不等式意味着先加入均值为零的噪声,然后求最大值,会产生高估。
假设对于所有的动作 a ∈ A a \in \mathcal{A} a∈A 和状态 s ∈ S , D Q N s \in \mathcal{S}, \mathrm{DQN} s∈S,DQN 的输出是真实价值 Q ⋆ ( s , a ) Q_{\star}(s, a) Q⋆(s,a) 加上均值为零的随机噪声 ϵ \epsilon ϵ :
Q ( s , a ; w ) = Q ⋆ ( s , a ) + ϵ . Q(s, a ; \boldsymbol{w})=Q_{\star}(s, a)+\epsilon . Q(s,a;w)=Q⋆(s,a)+ϵ.
显然 Q ( s , a ; w ) Q(s, a ; \boldsymbol{w}) Q(s,a;w) 是对真实价值 Q ⋆ ( s , a ) Q_{\star}(s, a) Q⋆(s,a) 的无偏估计。有这个不等式:
E ϵ [ max a ∈ A Q ( s , a ; w ) ] ≥ max a ∈ A Q ⋆ ( s , a ) . \mathbb{E}_\epsilon\left[\max _{a \in \mathcal{A}} Q(s, a ; \boldsymbol{w})\right] \geq \max _{a \in \mathcal{A}} Q_{\star}(s, a) . Eϵ[a∈AmaxQ(s,a;w)]≥a∈AmaxQ⋆(s,a).
公式说明哪怕 DQN 是对真实价值的无偏估计, 但是如果求最大化, DQN 就会高估真实价值。复习一下, TD 目标是这样算出来的:
y ^ j = r j + γ ⋅ max a ∈ A Q ( s j + 1 , a ; w ) ⏟ 高估 max a ∈ A Q ⋆ ( s j + 1 , a ) . \widehat{y}_j=r_j+\gamma \cdot \underbrace{\max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}\right)}_{\text {高估 } \max _{a \in \mathcal{A}} Q_{\star}\left(s_{j+1}, a\right)} . y j=rj+γ⋅高估 maxa∈AQ⋆(sj+1,a) a∈AmaxQ(sj+1,a;w).
这说明 TD 目标 y ^ j \widehat{y}_j y j 通常是对真实价值 Q ⋆ ( s j , a j ) Q_{\star}\left(s_j, a_j\right) Q⋆(sj,aj) 的高估。TD 算法鼓励 Q ( s j , a j ; w ) Q\left(s_j, a_j ; \boldsymbol{w}\right) Q(sj,aj;w) 接近 T D \mathrm{TD} TD 目标 y ^ j \widehat{y}_j y j, 这会导致 Q ( s j , a j ; w ) Q\left(s_j, a_j ; \boldsymbol{w}\right) Q(sj,aj;w) 高估真实价值 Q ⋆ ( s j , a j ) Q_{\star}\left(s_j, a_j\right) Q⋆(sj,aj) 。高估再通过自举的方式传给下一项。
想要避免DQN的高估,要么切断自举,要么避免最大化造成高估
四.使用目标网络
想要切断自举,可以用另一个神经网络计算TD目标,而不是用DQN自己计算TD目标。另一个神经网络被称作目标网络(target network)。把目标网络记作:
Q ( s , a ; w − ) Q\left(s, a ; \boldsymbol{w}^{-}\right) Q(s,a;w−)
设DQN和目标网络当前的参数分别为 w n o w w_{now} wnow和 w n o w − w^−_{now} wnow−
执行下面的步骤对参数做一次更新:
- 对 DQN 做正向传播, 得到:
q ^ j = Q ( s j , a j ; w now ) . \widehat{q}_j=Q\left(s_j, a_j ; \boldsymbol{w}_{\text {now }}\right) . q j=Q(sj,aj;wnow ). - 对目标网络做正向传播, 得到
q ^ j + 1 − = max a ∈ A Q ( s j + 1 , a ; w now − ) . \hat q_{j+1}^{-}=\max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}_{\text {now }}^{-}\right) . q^j+1−=a∈AmaxQ(sj+1,a;wnow −). - 计算 TD 目标和 TD 误差:
y ^ j = r j + γ ⋅ q ^ j + 1 − 和 δ j = q ^ j − y ^ j . \hat y_j=r_j+\gamma \cdot \hat q_{j+1}^{-} \quad \text { 和 } \quad \delta_j=\widehat{q}_j-\widehat{y}_j . y^j=rj+γ⋅q^j+1− 和 δj=q j−y j. - 对 DQN 做反向传播, 得到梯度 ∇ w Q ( s j , a j ; w now ) \nabla_{\boldsymbol{w}} Q\left(s_j, a_j ; \boldsymbol{w}_{\text {now }}\right) ∇wQ(sj,aj;wnow ) 。
- 做梯度下降更新 DQN 的参数:
w new ← w now − α ⋅ δ j ⋅ ∇ w Q ( s j , a j ; w now ) . \boldsymbol{w}_{\text {new }} \leftarrow \boldsymbol{w}_{\text {now }}-\alpha \cdot \delta_j \cdot \nabla_{\boldsymbol{w}} Q\left(s_j, a_j ; \boldsymbol{w}_{\text {now }}\right) . wnew ←wnow −α⋅δj⋅∇wQ(sj,aj;wnow ). - 设 τ ∈ ( 0 , 1 ) \tau \in(0,1) τ∈(0,1) 是需要手动调的超参数。做加权平均更新目标网络的参数:
w new − ← τ ⋅ w new + ( 1 − τ ) ⋅ w now − . \boldsymbol{w}_{\text {new }}^{-} \leftarrow \tau \cdot \boldsymbol{w}_{\text {new }}+(1-\tau) \cdot \boldsymbol{w}_{\text {now }}^{-} . wnew −←τ⋅wnew +(1−τ)⋅wnow −.
五.双Q学习
双Q学习总体上可以认为将选则与求值进行了解耦操作,缓解了高估问题
回顾一下 Q \mathrm{Q} Q 学习算法中的 TD 目标:
y ^ j = r j + γ ⋅ max a ∈ A Q ( s j + 1 , a ; w ) . \widehat{y}_j=r_j+\gamma \cdot \max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}\right) . y j=rj+γ⋅a∈AmaxQ(sj+1,a;w).
不妨把最大化拆成两步:
- 选择一一即基于状态 s j + 1 s_{j+1} sj+1, 选出一个动作使得 DQN 的输出最大化:
a ⋆ = argmax a ∈ A Q ( s j + 1 , a ; w ) . a^{\star}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q\left(s_{j+1}, a ; \boldsymbol{w}\right) . a⋆=a∈AargmaxQ(sj+1,a;w). - 求值一一即计算 ( s j + 1 , a ⋆ ) \left(s_{j+1}, a^{\star}\right) (sj+1,a⋆) 的价值, 从而算出 TD 目标:
y ^ j = r j + Q ( s j + 1 , a ⋆ ; w ) . \widehat{y}_j=r_j+Q\left(s_{j+1}, a^{\star} ; \boldsymbol{w}\right) . y j=rj+Q(sj+1,a⋆;w).
以上是原始的 Q \mathrm{Q} Q 学习算法, 选择和求值都用 D Q N \mathrm{DQN} DQN 。上一节改进了 Q \mathrm{Q} Q 学习, 选择和求值都用目标网络:
- 选择 : a − = argmax a ∈ A Q ( s j + 1 , a ; w − ) \quad a^{-}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q\left(s_{j+1}, a ; \boldsymbol{w}^{-}\right) a−=a∈AargmaxQ(sj+1,a;w−),
- 求值: y ^ j − = r j + Q ( s j + 1 , a − ; w − ) \quad \widehat{y}_j^{-}=r_j+Q\left(s_{j+1}, a^{-} ; \boldsymbol{w}^{-}\right) y j−=rj+Q(sj+1,a−;w−).
本节介绍双 Q \mathrm{Q} Q 学习, 第一步的选择用 DQN, 第二步的求值用目标网络:
- 选择: a ⋆ = argmax a ∈ A Q ( s j + 1 , a ; w ) \quad a^{\star}=\underset{a \in \mathcal{A}}{\operatorname{argmax}} Q\left(s_{j+1}, a ; \boldsymbol{w}\right) a⋆=a∈AargmaxQ(sj+1,a;w),
- 求值 : y ~ j = r j + Q ( s j + 1 , a ⋆ ; w − ) \quad \tilde{y}_j=r_j+Q\left(s_{j+1}, a^{\star} ; \boldsymbol{w}^{-}\right) y~j=rj+Q(sj+1,a⋆;w−).
不难证明出这个不等式:
Q ( s j + 1 , a ⋆ ; w − ) ⏟ 双 Q 学习 ≤ max a ∈ A Q ( s j + 1 , a ; w − ) ⏟ 用目标网络的 Q 学习 . \underbrace{Q\left(s_{j+1}, a^{\star} ; \boldsymbol{w}^{-}\right)}_{\text {双 } \mathrm{Q} \text { 学习 }} \leq \underbrace{\max _{a \in \mathcal{A}} Q\left(s_{j+1}, a ; \boldsymbol{w}^{-}\right)}_{\text {用目标网络的 } \mathrm{Q} \text { 学习 }} . 双 Q 学习 Q(sj+1,a⋆;w−)≤用目标网络的 Q 学习 a∈AmaxQ(sj+1,a;w−).
因此,
y ~ t ⏟ 双 Q 学习 ≤ y ~ t − ⏟ 用目标网络的 Q 学习 . \underbrace{\tilde{y}_t}_{\text {双 } \mathrm{Q} \text { 学习 }} \leq \underbrace{\widetilde{y}_t^{-}}_{\text {用目标网络的 } \mathrm{Q} \text { 学习 }} . 双 Q 学习 y~t≤用目标网络的 Q 学习 y t−.
这个公式说明双 Q \mathrm{Q} Q 学习得到的 TD 目标更小。也就是说, 与用目标网络的 Q \mathrm{Q} Q 学习相比,双 Q 学习缓解了高估。