R语言实现中介分析(1)

中介分析,也称为介导分析,是统计学中的一种方法,它用于评估一个或多个中介变量(也称为中间变量)在自变量和因变量之间关系中所起的作用。换句话说,中介分析用于探索自变量如何通过中介变量影响因变量的机制。

虽然中介效应的存在可能意味着某种因果关系机制,但它并不能直接证明因果关系。因此,在解释中介分析结果时,需要考虑其他可能的解释和变量之间的关系。

#Mediatoion analysis
#install.packages("mediation")
help(package="mediation")
library(mediation)
data(jobs)
#线性结果和中介模型
b <- lm(job_seek ~ treat + econ_hard + sex + age, data=jobs)#这个模型用treat(治疗或干预变量)、econ_hard(经济困难)、sex(性别)和age(年龄)来预测job_seek(求职)。
c <- lm(depress2 ~ treat + job_seek + econ_hard + sex + age, data=jobs)#这个模型用相同的变量treat、econ_hard、sex和age,以及job_seek(现在作为中介变量)来预测depress2(抑郁程度)。
# Estimation via quasi-Bayesian approximation
contcont <- mediate(b, c, sims=50, treat="treat", mediator="job_seek")#这个模型用相同的变量treat、econ_hard、sex和age,以及job_seek(现在作为中介变量)来预测depress2(抑郁程度)。
summary(contcont)#查看中介分析的结果摘要。这个摘要通常包括中介效应的估计值、标准误、置信区间,以及直接效应和间接效应(通过中介变量的效应)的估计。
plot(contcont)#绘制中介分析的结果图
#ACME (Average Causal Mediation Effect): 这是中介变量(在这里是job_seek)的平均因果中介效应,表示处理变量(treat)通过中介变量对结果变量(depress2)的间接影响。
#ADE (Average Direct Effect): 这是处理变量对结果变量的直接效应,即在控制中介变量后的效应。
#Total Effect: 这是处理变量对结果变量的总效应,即直接效应和间接效应之和。

 

这个因果中介分析的结果提供了关于中介变量效应的一些重要估计和置信区间。以下是对结果的解读:

ACME (Average Causal Mediation Effect):
估计值(Estimate)为 -0.0167,这意味着中介变量(可能是求职行为job_seek)平均而言在处理变量(treat)和结果变量(抑郁程度depress2)之间产生了负的间接效应。换句话说,处理通过中介变量减少了抑郁程度,但这一效应相对较小。

95%置信区间(95% CI Lower 和 95% CI Upper)为 [-0.0360, 0.00],这意味着我们不能排除ACME为零的可能性,因为零包含在这个区间内。

p-值为0.20,说明ACME的估计值在统计上并不显著,即我们不能有充足的证据认为中介变量产生了显著的间接效应。

ADE (Average Direct Effect):
估计值为 -0.0424,表示处理变量对结果变量的直接效应(即控制中介变量后的效应)是负的,但同样相对较小。

95%置信区间为 [-0.1042, 0.03],这个区间包括零,因此直接效应在统计上并不显著。

p-值为0.40,进一步支持了直接效应不显著的观点。

Total Effect:
估计值为 -0.0591,表示处理变量对结果变量的总效应是负的。

95%置信区间为 [-0.1294, 0.02],这个区间也包括零,因此总效应在统计上并不显著。

p-值为0.20,与ACME的p-值相同,进一步表明我们没有足够的证据认为总效应是显著的。

Prop. Mediated (Proportion Mediated):
这是中介效应占总效应的比例。估计值为 0.2152,意味着中介变量解释了约21.52%的总效应。但由于置信区间为 [-0.7867, 1.86],这个比例非常不确定,且包括负数,因此我们不能得出关于中介效应比例的具体结论。

p-值为0.24,表明这个比例在统计上并不显著。

Sample Size Used:
分析使用的样本大小为899,这是一个相对较大的样本,通常可以提供较为稳定的估计,但在这里由于效应本身可能较小或不存在,因此即使样本量相对较大,我们仍然不能得出显著的结论。

Simulations:
分析过程中使用了50次模拟来估计标准误和置信区间。模拟次数是一个相对较小的数字,但根据具体情境和计算资源,这可能是一个合理的选择。增加模拟次数可能会提供更准确的估计,但也会增加计算时间。

综上所述,这个因果中介分析的结果并没有提供足够的证据来支持中介变量(job_seek)在处理变量(treat)和结果变量(depress2)之间产生了显著的间接效应。同时,直接效应和总效应也都不显著。因此,我们不能基于这些结果得出关于中介效应存在或重要性的明确结论。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/545218.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面试经典-33-反转链表 II

题目 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点&#xff0c;返回 反转后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5], left 2, right 4 输出&#xff1a…

JavaWeb--HTML

一&#xff1a;HTML简介 *HTML是一门语言&#xff0c;所有的网页都是用HTML这门语言编写出来的&#xff1b; *HTML&#xff1a;超文本标记语言&#xff1b; 超文本&#xff1a;超越了文本的限制&#xff0c;比普通文本更强大。除了文字信息&#xff0c;还能定义图片&#xff…

实战!wsl 与主机网络通信,在 wsl 中搭建服务器。学了计算机网络,但只能刷刷面试题?那也太无聊了!这篇文章可以让你检测你的计网知识!

前言&#xff08;碎碎念&#xff09;&#xff1a;每次发布文章时&#xff0c;我都是一个纠结的过程。因为我给自己写笔记时&#xff0c;只需要记录自己不清晰或者易忘的知识点就可以了&#xff0c;但一旦想要作为文章发布&#xff0c;那么我就得考虑到很多人是纯新手&#xff0…

Spring Security源码

WebSecurityConfigurerAdapter已废弃&#xff0c;官方推荐使用HttpSecurity 或WebSecurity。 都继承了SecurityBuilder public interface SecurityBuilder<O> {O build() throws Exception;}亮点&#xff1a;通过这种方式很容易知道知道自己构建的Object HttpSecurit…

手机也能写前段代码,推荐一款万能编程软件

Python是一种强大的编程语言&#xff0c;广泛应用于各个领域&#xff0c;包括移动应用开发。如果你想在手机上进行Python编程&#xff0c;那么选择合适的软件工具就显得尤为重要。 一.python Pydroid 3 Pydroid 3是一款专为Android设备打造的Python IDE。它提供了一个完整的开…

RTC的Google拥塞控制算法 rmcat-gcc-02

摘要 本文档描述了使用时的两种拥塞控制方法万维网&#xff08;RTCWEB&#xff09;上的实时通信&#xff1b;一种算法是基于延迟策略&#xff0c;一种算法是基于丢包策略。 1.简介 拥塞控制是所有共享网络的应用程序的要求互联网资源 [RFC2914]。 实时媒体的拥塞控制对于许…

Linux系统安全②SNAT与DNAT

目录 一.SNAT 1.定义 2.实验环境准备 &#xff08;1&#xff09;三台服务器&#xff1a;PC1客户端、PC2网关、PC3服务端。 &#xff08;2&#xff09;硬件要求&#xff1a;PC1和PC3均只需一块网卡、PC2需要2块网卡 &#xff08;3&#xff09;网络模式要求&#xff1a;PC1…

Git——本地使用详解

目录 Git1、开始版本控制1.1、初始化Repository1.2、使目录脱离Git控制 2、把文件交给Git管控2.1、创建文件后交给Git2.2、git add之后再次修改文件2.3、git add "--all"与"."参数区别2.4、把暂存区的内容提交到存储库里存档 3、工作区、暂存区与存储库3.1…

idea找不到或无法加载主类

前言 今天在运行项目的时候突然出了这样一个错误&#xff1a;IDEA 错误 找不到或无法加载主类,相信只要是用过IDEA的朋友都 遇到过它吧&#xff0c;但是每次遇到都是一顿焦头烂额、抓耳挠腮、急赤白咧&#xff01;咋整呢&#xff1f;听我给你吹~ 瞧我这张嘴~ 问题报错 找不…

Kafka MQ 生产者

Kafka MQ 生产者 生产者概览 尽管生产者 API 使用起来很简单&#xff0c;但消息的发送过程还是有点复杂的。图 3-1 展示了向 Kafka 发送消息的主要步骤。 我们从创建一个 ProducerRecord 对象开始&#xff0c;ProducerRecord 对象需要包含目标主题和要发送的内容。我们还可以…

【机器学习300问】35、什么是随机森林?

〇、让我们准备一些训练数据 idx0x1x2x3x4y04.34.94.14.75.5013.96.15.95.55.9022.74.84.15.05.6036.64.44.53.95.9146.52.94.74.66.1152.76.74.25.34.81 表格中的x0到x4一共有5个特征&#xff0c;y是目标值只有0,1两个值说明是一个二分类问题。 关于决策树相关的前置知识&am…

为什么HashMap要使用红黑树?

1、典型回答 HashMap 中之所以使用红黑树&#xff0c;是因为红黑树最合适做 HashMap 多节点的数据存储和查询。因为使用二又搜索树在某些情况下会退化为链表&#xff0c;所以它的查询效率可能会存在问题&#xff0c;而使用 AVL 树&#xff0c;在添加或删除时&#xff0c;效率又…