EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)

EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)

目录

    • EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现VMD-TCN-BiGRU-MATT变分模态分解结合卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测;
2.运行环境为Matlab2023及以上;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main1-VMD.m、main2-VMD-TCN-BiGRU-MATT.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
VMD-TCN-BiGRU-MATT模型是一种结合了变分模态分解(VMD)、时间卷积神经网络(TCN)、双向门控循环单元(BiGRU)以及多头注意力机制(MATT)的多变量时间序列预测模型。该模型旨在充分利用各种技术的优势,以提高时间序列预测的准确性和稳定性。

首先,VMD技术用于对原始时间序列数据进行预处理。通过VMD,可以将复杂的时间序列信号分解为若干个模态分量,从而提取出原始数据中的有用信息和特征。这有助于降低数据的复杂性,并使得后续的特征提取和预测过程更加高效。

接下来,TCN用于进一步提取时间序列数据中的局部特征。TCN具有扩张因果卷积结构,能够捕捉序列中的长期依赖关系,并通过卷积操作提取出重要的局部特征。这些特征对于后续的预测过程至关重要。

然后,BiGRU网络被引入以处理序列数据中的短期和长期依赖关系。BiGRU是一种具有记忆单元的递归神经网络,能够充分利用序列数据的时序信息。通过将TCN提取的特征输入到BiGRU网络中,可以进一步提高模型的预测能力。

最后,多头注意力机制(MATT)被整合到模型中,以进一步提高预测精度。MATT允许模型对序列的不同部分进行注意力运算,从而更准确地捕捉关键信息。通过将独立的注意力输出串联起来并线性地转化为预期维度,MATT能够帮助模型更好地理解输入序列的复杂结构和依赖关系。

综上所述,VMD-TCN-BiGRU-MATT模型通过结合VMD、TCN、BiGRU和MATT等多种技术,实现了对多变量时间序列的有效预测。该模型能够充分利用各种技术的优势,提高预测精度和稳定性,对于处理复杂时间序列数据具有重要的应用价值。在实际应用中,可以根据具体的数据和任务需求对该模型进行进一步的优化和调整。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现VMD-TCN-BiGRU-MATT变分模态分解结合卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res =xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);f_ = size(P_train, 1);                  % 输入特征维度%%  数据归一化
layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);outputName = layer.Name;for i = 1:numBlocksdilationFactor = 2^(i-1);layers = [convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)layerNormalizationLayerdropoutLayer(dropoutFactor) % spatialDropoutLayer(dropoutFactor)convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")layerNormalizationLayerreluLayerdropoutLayer(dropoutFactor) additionLayer(2,Name="add_"+i)];% Add and connect layers.lgraph = addLayers(lgraph,layers);lgraph = connectLayers(lgraph,outputName,"conv1_"+i);% Skip connection.if i == 1% Include convolution in first skip connection.layer = convolution1dLayer(1,numFilters,Name="convSkip");lgraph = addLayers(lgraph,layer);lgraph = connectLayers(lgraph,outputName,"convSkip");lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");elselgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");end% Update layer output name.outputName = "add_" + i;
endtempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/562879.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux:Jenkins全自动持续集成持续部署(3)

在上一章部署好了之后,还需要点击一下才能进行部署,本章的效果是:当gitlab上的代码发生了变化后,我们不需要做任何事情不需要去点击构建按钮,Jenkins直接自动检测变化,然后自动去集成部署Linux:…

【动态规划】Leetcode 746. 使用最小花费爬楼梯

【动态规划】Leetcode 746. 使用最小花费爬楼梯 解法 ---------------🎈🎈题目链接🎈🎈------------------- 解法 😒: 我的代码实现> 动规五部曲 ✒️确定dp数组以及下标的含义 dp[i] 表示跳跃到第 i 层&#x…

【小白入门篇1】GPT到底是怎样练成?

由于具有代表性的OpenAI公司GPT模型并没有开源,所以本章节是参考一些开源和现有课程(李宏毅)讲解ChatGPT原理。本章没有涉及到很多数学运算,比较适合小白了解GPT到底是怎么练成。GPT的三个英文字母分别代表Generative(生成式)&…

腾讯云GPU服务器介绍_GPU实例规格价格_AI_深度学习

腾讯云GPU服务器是提供GPU算力的弹性计算服务,腾讯云GPU服务器具有超强的并行计算能力,可用于深度学习训练、科学计算、图形图像处理、视频编解码等场景,腾讯云百科txybk.com整理腾讯云GPU服务器租用价格表、GPU实例优势、GPU解决方案、GPU软…

STM32 CAN的工作模式

STM32 CAN的工作模式 正常模式 正常模式下就是一个正常的CAN节点,可以向总线发送数据和接收数据。 静默模式 静默模式下,它自己的输出端的逻辑0数据会直接传输到它自己的输入端,逻辑1可以被发送到总线,所以它不能向总线发送显性…

数据结构/C++:哈希表

数据结构/C:哈希表 哈希表概念哈希函数直接定址法除留余数法 哈希冲突闭散列 - 开放定址法基本结构查找插入删除总代码展示 开散列 - 哈希桶基本结构查找插入删除代码展示 哈希表概念 在顺序表中,查找一个数据的时间复杂度为O(N);在平衡树这…

Linux的学习之路:2、基础指令(1)

一、ls指令 上篇文章已经说了一点点的ls指令,不过那还是不够的,这篇文章会介绍更多的指令,最起码能使用命令行进行一些简单的操作,下面开始介绍了 ls常用选项 -a 列出目录下的所有文件,包括以 . 开头的隐含文件。 -d…

蓝桥杯-单片机基础8——上下位机的串口通信设置(附小蜜蜂课程代码)

蓝桥杯单片机组备赛指南请查看这篇文章:戳此跳转蓝桥杯备赛指南文章 本文章针对蓝桥杯-单片机组比赛开发板所写,代码可直接在比赛开发板上使用。 型号:国信天长4T开发板(绿板),芯片:IAP15F2K6…

Python 从0开始 一步步基于Django创建项目(3)使用Admin site管理数据模型

本文内容建立在《Python 从0开始 一步步基于Django创建项目(2)创建应用程序&数据模型》的基础上。 Django提供的admin site,使得网站管理员,能够轻松管理网站的数据模型。 本文首先创建‘管理员账户’,即超级用户…

Day 1 二分算法(C++)

算法简介 二分查找(Binary Search)是一种常见的查找算法,它适用于已经排序好的数组或列表。它的基本思想是不断地将待查找区间分成两半,并通过比较目标值与中间元素的大小关系来确定目标值在哪一半中,从而缩小查找范围…

Uibot6.0 (RPA财务机器人师资培训第3天 )财务招聘信息抓取机器人案例实战

训练网站:泓江科技 (lessonplan.cn)https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981(本博…

AGV|机器人导航识别二维码视觉传感器TDCS-0100与上位机PLC联机实例说明

目前二维码视觉导航的AGV出货量非常大,几乎都是仓储型AGV使用的导航方式。在地面或者天花板等位置标贴二维码作为标记点,通过扫描读取二维码信息和二维码相对相机的角度来确定当前位置。 本文重点介绍AGV|机器人导航识别二维码视觉传感器TDCS-0100与上位…