【C++语言】冲突-C语言:命名冲突(输入输出、缺省参数、引用、内联函数)

在这里插入图片描述


文章目录

  • 前言
  • 正文
  • 2. C++的输入与输出:
  • 3.缺省参数
    • 3.1 缺省参数的概念:
    • 3.2 缺省参数的分类:
      • 全缺省参数:
      • 半缺省参数:
  • 4.函数重载
    • 4.1 函数重载的概念:
  • 5.引用
    • 5.1 引用的基本概念:
    • 5.2 引用的特性:
    • 5.3 常引用:
    • 5.4 引用使用场景:
  • 6.内联函数
    • 6.1 概念:
    • 6.2 特性:
  • C++语言系列学习目录


前言

这里是对上篇推文的衔接。


正文

2. C++的输入与输出:

了解了上面的知识,确实这样写就不大好了,当然如果是竞赛,全部展开还会影响代码速度。

#include<iostream>
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{
cout<<"Hello world!!!"<<endl;
return 0;
}

这里就不如单独展开,或者单独访问

#include<iostream>using  std::cout;
using  std::endl;
int main()
{
cout<<"Hello world!!!"<<endl;
std::cout<<"Hello world!!!"<<std::endl;
return 0;
}

说明:

  1. 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件以及按命名空间使用方法使用std。
  2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含< iostream >头文件中。
  3. <<是流插入运算符,>>是流提取运算符。
  4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。C++的输入输出可以自动识别变量类型
  5. 实际上cout和cin分别是ostream和istream类型的对象,>>和<<也涉及运算符重载等知识。

3.缺省参数

3.1 缺省参数的概念:

  • 缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实参则采用该形参的缺省值,否则使用指定的实参。
    在这里插入图片描述

3.2 缺省参数的分类:

全缺省参数:

void Func(int a = 10, int b = 20, int c = 30)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}

半缺省参数:

void Func(int a, int b = 10, int c = 20)
{
cout<<"a = "<<a<<endl;
cout<<"b = "<<b<<endl;
cout<<"c = "<<c<<endl;
}

注意:

  1. 半缺省参数必须从右往左依次来给出,不能间隔着给
    解释:我们函数输入参数是按照从左向右的顺序,如果半缺省参数也从左向右的顺序来,那么就很有可能后面的参数没有默认值,导致参数缺少;

  2. 缺省参数不能在函数声明和定义中同时出现,在声明给缺省。
    理由:在预处理阶段—编译阶段我们都只能看到声明文件,不包含定义文件,所以如果是声明没有给缺省,我们传入参数数量若少于声明参数数量则会报错。所以我们就在声明给缺省。

  3. 缺省值必须是常量或者全局变量

  4. C语言不支持(编译器不支持)

4.函数重载

4.1 函数重载的概念:

函数重载: 是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类型不同的问题。

#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{cout << "int Add(int left, int right)" << endl;return left + right;
}
double Add(double left, double right)
{cout << "double Add(double left, double right)" << endl;return left + right;
}
// 2、参数个数不同
void f()
{cout << "f()" << endl;
}
void f(int a)
{cout << "f(int a)" << endl;
}
// 3、参数类型顺序不同
void f(int a, char b)
{cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{cout << "f(char b, int a)" << endl;
}
int main()
{Add(10, 20);Add(10.1, 20.2);f();f(10);f(10, 'a');f('a', 10);return 0;
}

5.引用

5.1 引用的基本概念:

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。

比如:李逵,在家称为 铁牛 ,江湖上人称黑旋风。只是别名。

在这里插入图片描述
在代码中引用的格式:类型& 引用变量名(对象名) = 引用实体;

5.2 引用的特性:

#include<stdio.h>
int main()
{int a = 10;int b = 20;//int& b;这里会报错,原因引用必须初始化int& ra = a;//这里就是定义ra为a的别名int& rra = a;//一个变量可以有多个引用//int& ra=b;//这里会报错,引用只能引用一个引用实体,引用在C++中是不能更改的;printf("%d %d %d\n", a, ra,rra);//打印结果为:10  10  10printf("%p %p %p\n", &a, &ra,&rra);//打印结果为:00B3F70C 00B3F70C 00B3F70Cra=b;//赋值操作,a.ra.rra为同一空间,一个改变其他肯定改变,值是统一的,只是称呼不同罢了printf("%d %d %d\n", a, ra,rra);//打印结果为:20  20  20
}

从上面代码我们可以得出引用的特性:

    1. 引用定义必须初始化,也就是必须有引用实体;
    1. 一个变量可以有多个引用;
    1. 引用一旦引用一个实体,再不能引用其他实体;

5.3 常引用:

#include<stdio.h>
int main()
{//引用过程中权限不能扩大,但可以平移和缩小const int a = 10;//int& ra = a; // 该语句编译时会出错,a为常量--权限扩大(x)int c = 20;const int& rc = c;//权限缩小const int& ra = a;//权限平移
}
  • 结论:引用过程权限只能平移或者缩小,不能扩大
// int& b = 10; // 该语句编译时会出错,b为常量--权限扩大(x)const int& b = 10;double d = 12.34;//int& rd = d; // 该语句编译时会出错,类型不同--权限扩大(x)const int& rd = d;//为什么不报错呢?为什么加个const就可以了

再看这个例子,const int& rd = d;//为什么不报错呢?为什么加个const就可以了?其实这个对比上面局的b的例子或许能得出答案;

  • 10是一个常量,类型可以看做为const int类型,所以第一句是权限扩大,会报错。所以加const修饰就可以,实现权限平移,不会报错
  • 第二个是会发生强制类型转化,但转换过程中会用到中间临时变量,临时变量具有常性,为一个常量,所以理由同上;
int func1()
{int x = 10;return x;
}int& func2()
{int x = 10;return x;
}int main()
{int ret = func1();//拷贝//int& ret = func1();报错,权限扩大(x)const int& ret = func1; //和上面一样,返回值的话是需要通过临时变量的,也就同上int& ret = func2();//这就没有问题,这里的func2()相当于对x的取别名,这里就相当于再次取别名const int& ret = func2();//权限的缩小;
}

5.4 引用使用场景:

  1. 做参数:
//拿交换函数来举个例子:
void Swap(int& left,int& right)
{int tem = left ;left = right;right =tem;
}Swap(a,b);

在上述代码中,其实我们传入的a,b就不在是a,b的值拷贝了,而是a,b的别名,所以更改left,right就可以实现更改a,b;

这里可以对比一下值传参和引用传参的效率比较: 以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低

  1. 做返回值:
//传值返回
#include<stdio.h>
#include<iostream>
using namespace std;int& count(int x)//返回一个n的别名
{int n = x;n++;return n;
}int main()
{int& ret = count(10);//别名的多层复用cout << ret << endl;//运行结果:11count(20);rand();cout << ret << endl;//运行结果:随机值
}

为什么这里会出现错误,而不是和我们上面所说的一样,n一改变其他别名也会改变呢?其实这里依旧是这个原理,但不一样的是这里的n为局部变量,n在调用过后栈区间会清除(并非销毁空间,归还区间访问权,清理该区间的数据)。那问题来了,为什么第一个答案是11是正确的呢,这可能跟编译器有关,编译器没有在清除该区域,只是收回了访问权(比如:指针就无法访问到这片空间,但值或许没变),但在调用rand()函数或者随机一个函数时,会开辟空间,就可能会利用到n那片空间,系统在栈帧操作过程中,就会有赋值,所以当我们引用继续访问时,发现值已经改变;

总结:传参引用都可以使用,但作为返回值需要考虑传回参数是否会出作用域后被清除。

6.内联函数

6.1 概念:

概念:以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。
在这里插入图片描述
如果在上述函数前增加inline关键字将其改成内联函数,在编译期间编译器会用函数体替换函数的调用。查看方式:

  1. 在release模式下,查看编译器生成的汇编代码中是否存在call Add
  2. 在debug模式下,需要对编译器进行设置,否则不会展开(因为debug模式下,编译器默认不会对代码进行优化)

6.2 特性:

  1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
  2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。
  3. inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址了,链接就会找不到。

C++语言系列学习目录

提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加,添加超链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/572627.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

gopher伪协议

基础知识 基本格式 基本格式&#xff1a;URL:gopher://<host>:<port>/<gopher-path>web也需要加端口号80gophert协议默认端口为70gopheri请求不转发第一个字符 get请求 问号&#xff08;&#xff1f;)需要转码为URL编码&#xff0c;也就是%3f回车换行要变…

sheng的学习笔记-AI-YOLO算法,目标检测

AI目录&#xff1a;sheng的学习笔记-AI目录-CSDN博客 目录 目标定位&#xff08;Object localization&#xff09; 定义 原理图 具体做法&#xff1a; 输出向量 图片中没有检测对象的样例 损失函数 ​编辑 特征点检测&#xff08;Landmark detection&#xff09; 定义&a…

云原生(六)、CICD - Jenkins快速入门

Jenkuns快速入门 一、CICD概述 CICD是持续集成&#xff08;Continuous Integration&#xff09;和持续部署&#xff08;Continuous Deployment&#xff09;的缩写。它是软件开发中的一种流程和方法论&#xff0c;旨在通过自动化的方式频繁地将代码集成到共享存储库中&#xf…

STM32启动文件命名方式说明以及启动过程分析

1、启动文件的路径 cl&#xff1a;互联型产品&#xff0c;stm32f105/107系列 vl&#xff1a;超值型产品&#xff0c;stm32f100系列 xl&#xff1a;超高密度产品&#xff0c;stm32f101/103系列 flash容量大小&#xff1a; ld&#xff1a;小容量产品&#xff0c; 小于64KB md…

CV领域 交叉注意力(Cross Attention)中QKV的含义理解

交叉注意力公式&#xff1a; 注意力的输入&#xff1a; &#xff08;1&#xff09;KV&#xff1a;图像的全局特征 &#xff08;2&#xff09;Q&#xff1a;告诉attention需要关注哪些重要特征 公式计算过程理解&#xff1a; &#xff08;1&#xff09;&#xff1a;Q和K相乘…

Django Cookie和Session

Django Cookie和Session 【一】介绍 【1】起因 HTTP协议四大特性 基于请求响应模式&#xff1a;客户端发送请求&#xff0c;服务端返回响应基于TCP/IP之上&#xff1a;作用于应用层之上的协议无状态&#xff1a;HTTP协议本身不保存客户端信息短链接&#xff1a;1.0默认使用短…

libVLC 动态视频壁纸

在 Windows 上&#xff0c;你可能需要使用 Windows API 来设置壁纸&#xff0c;而在 Linux 上&#xff0c;你可能需要使用某种桌面环境特有的方法。在 macOS 上&#xff0c;这一功能可能受到限制。 效果图如下所示&#xff1a; 以下是一个简单的示例&#xff0c;说明了如何在 …

基于Arduino IDE 野火ESP8266模块 一键配网 的开发

一、配网介绍 ESP8266 一键配网&#xff08;也称为 SmartConfig 或 FastConfig&#xff09;是一种允许用户通过智能手机上的应用程序快速配置 ESP8266 Wi-Fi 模块的方法&#xff0c;而无需手动输入 SSID 和密码。为了实现这一功能&#xff0c;则需要一个支持 SmartConfig 的智能…

ssm小区车库停车系统开发mysql数据库web结构java编程计算机网页源码eclipse项目

一、源码特点 ssm小区车库停车系统是一套完善的信息系统&#xff0c;结合springMVC框架完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模…

Tensorflow2.0笔记 - 使用compile,fit,evaluate,predict简化流程

本笔记主要用compile, fit, evalutate和predict来简化整体代码&#xff0c;使用这些高层API可以减少很多重复代码。具体内容请自行百度&#xff0c;本笔记基于FashionMnist的训练笔记&#xff0c;原始笔记如下&#xff1a; Tensorflow2.0笔记 - FashionMnist数据集训练-CSDN博…

Tunes不能读取iPhone的内容,请前往iPhone偏好设置的摘要选项卡,然后单击恢复以将此iPhone恢复为出厂设置

重启itunes: 参考链接&#xff1a; https://baijiahao.baidu.com/s?id1642568736254330322&wfrspider&forpc 人工智能学习网站&#xff1a; https://chat.xutongbao.top

实例:NX二次开发使用链表进行拉伸功能(链表相关功能练习)

一、概述 在进行批量操作时经常会利用链表进行存放相应特征的TAG值&#xff0c;以便后续操作&#xff0c;最常见的就是拉伸功能。这里我们以拉伸功能为例子进行说明。 二、常用链表相关函数 UF_MODL_create_list 创建一个链表&#xff0c;并返回链表的头指针。…