今天有个需求需要实现类似这种进度条
渐变,指示点,背景这些都比较容易实现,前面这段有个高度逐渐增大的地方卡住了,半天没想到用什么方式去实现,搜了一圈,发现可以用echarts来实现
let icon1 = 'image://';
let icon2 = 'image://';
let color1 = new echarts.graphic.LinearGradient(0, 0, 1, 0, [{offset: 0,color: '#0A3869'},{offset: 1,color: '#93E68F'}
]);
let color2 = new echarts.graphic.LinearGradient(0, 0, 1, 0, [{offset: 0,color: '#0A3869'},{offset: 1,color: '#F5C682'}
]);
let dataArr = [{value: 100,name: '10-30',itemStyle: {color: color1}
},
{value: 90,name: '10-31',itemStyle: {color: color2}
},
{value: 80,name: '11-01',itemStyle: {color: color1}
},
{value: 60,name: '11-02',itemStyle: {color: color2}
}
];
let dataArr1 = [{value: 100,name: '10-30',symbol: icon1
},
{value: 90,name: '10-31',symbol: icon2
},
{value: 80,name: '11-01',symbol: icon1
},
{value: 60,name: '11-02',symbol: icon2
}
];
let dataArr2 = [{value: 100,itemStyle: {color: new echarts.graphic.LinearGradient(0, 0, 1, 0, [{offset: 1,color: '#00000000'},{offset: 1,color: '#0A3869'},{offset: 1,color: '#0A3869'}])}
},
{value: 100,itemStyle: {color: new echarts.graphic.LinearGradient(0, 0, 1, 0, [{offset: 0.9,color: '#00000000'},{offset: 0.9,color: '#0A3869'},{offset: 1,color: '#0A3869'}])}
},
{value: 100,itemStyle: {color: new echarts.graphic.LinearGradient(0, 0, 1, 0, [{offset: 0.8,color: '#00000000'},{offset: 0.8,color: '#0A3869'},{offset: 1,color: '#0A3869'}])}
},
{value: 100,itemStyle: {color: new echarts.graphic.LinearGradient(0, 0, 1, 0, [{offset: 0.6,color: '#00000000'},{offset: 0.6,color: '#0A3869'},{offset: 1,color: '#0A3869'}])}
}
];option = {backgroundColor: '#021334',xAxis: {show: false},tooltip: {show: true},yAxis: [{triggerEvent: true,show: true,data: ['10-30', '10-31', '11-01', '11-02'],axisLine: {show: false},splitLine: {show: false},axisTick: {show: false},axisLabel: {show: true,margin: -40,interval: 0,inside: true,padding: [0, 0, -5, 0],color: '#ffffff',fontSize: 14,align: 'left'}},{show: true,offset: 0,data: ['100', '90', '80', '60'],axisLine: {show: false},splitLine: {show: false},axisTick: {show: false},axisLabel: {show: true,margin: -40,interval: 0,inside: true,padding: [0, 0, -5, 0],color: '#ffffff',fontSize: 14,align: 'right'}}],series: [{type: 'pictorialBar',barMinWidth: '10',symbol: 'path://M 0 5 L 17 0 L 17 10 z',symbolOffset: [0, 5],yAxisIndex: 0,data: dataArr,barWidth: 2,z: 1,itemStyle: {normal: {barBorderRadius: 20}}},{data: dataArr1,type: 'pictorialBar',barMaxWidth: 20,symbolPosition: 'end',symbolOffset: [15, 0],symbolSize: [30, 30],zlevel: 2,silent: true},{type: 'bar',barGap: '-100%',yAxisIndex: 0,data: dataArr2,barWidth: 10,itemStyle: {barBorderRadius: 0},z: 0,silent: true}]
};
改造一下就可以用了
let icon1 = 'image://';
let color1 = new echarts.graphic.LinearGradient(0, 0, 1, 0, [{offset: 0,color: '#0A3869'},{offset: 1,color: '#93E68F'}
]);let process = 10
let dataArr = [{value: process,name: '10-30',itemStyle: {color: color1}
},];
let dataArr1 = [{value: process,name: '10-30',symbol: icon1
},];
let dataArr2 = [{value: 100,itemStyle: {color: new echarts.graphic.LinearGradient(0, 0, 1, 0, [{offset: process/100,color: '#00000000'},{offset: process/100,color: '#0A3869'},{offset: 1,color: '#0A3869'}])}
},];option = {backgroundColor: '#021334',xAxis: {show: false},tooltip: {show: true},yAxis: [{triggerEvent: true,show: false,data: ['10-30'],},{show: false,offset: 0,data: ['100',],}],series: [{type: 'pictorialBar',barMinWidth: '10',symbol: 'path://M 0 5 L 17 0 L 17 10 z',symbolOffset: [0, 5],yAxisIndex: 0,data: dataArr,barWidth: 2,z: 1,itemStyle: {normal: {barBorderRadius: 20}}},{data: dataArr1,type: 'pictorialBar',barMaxWidth: 20,symbolPosition: 'end',symbolOffset: [15, 0],symbolSize: [30, 30],zlevel: 2,silent: true},{type: 'bar',barGap: '-100%',yAxisIndex: 0,data: dataArr2,barWidth: 10,itemStyle: {barBorderRadius: 0},z: 0,silent: true}]
};