机器学习模型——逻辑回归

https://blog.csdn.net/qq_41682922/article/details/85013008

https://blog.csdn.net/guoziqing506/article/details/81328402

https://www.cnblogs.com/cymx66688/p/11363163.html  参数详解

逻辑回归的引出:

数据线性可分可以使用线性分类器,如果数据线性不可分,可以使用非线性分类器。但是对于一个二分类问题,如果我们不仅想知道一个具体的样例是属于哪一类,而且还想知道该类属于某一类的概率多大,有什么办法呢?逻辑回归使用回归的思想来处理分类问题。

逻辑回归:

                                      z= w_0+w_1x_1 + w_2x_2 + w_3x_3 + … + w_nx_n

z的阈值处于(-∞,+ ∞),此时不能很好的给出属于某一类的概率,因为概率的范围在[0,1]之间,并且这个函数能够具有很好的可微分性。在这种需求下,人们找到了这个映射函数,即 Sigmoid 函数,其形式如下:

逻辑回归的目标函数 :

需求分析:对于一个二分类问题,我们关心的是根据自变量的值来对 Y 的取值 0 或 1 进行预测。

逻辑回归模型得到的只是 p{Y=1l x} 的预测概率。一般以0.5为界限,预测大于0.5时,我们判断此时 Y 更可能为1,否则认为 Y =0。

假设 Sigmoid 函数 Φ(z) 表示属于1类的概率, 于是做出如下的定义:

将两个式子综合起来可以改成为下式:

逻辑回归的损失函数 :

目的分析:因为逻辑回归是为了解决二分类问题,即我们的目的应该是求取参数 w 和 b 使得 p(y l x) 对 0 类和 1 类的分类结果尽可能取最大值。然而我们定义损失函数时往往是为了最大化的达到我们的目的的同时使所付出的代价最小 (损失函数最小)。于是很自然地在目的函数前加一个负号就得到了我们逻辑回归的损失函数:

 根据损失函数是单个样本的预测值和实际值的误差,而成本函数是全部样本的预测值和实际值之间的误差,于是对所有样本的损失值取平均,得到我们的成本函数:

代码实现: 

from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_wine
data = load_wine()
lr = LogisticRegression()X = data.data
y = data.targetfrom sklearn.model_selection import train_test_splitX_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)
lr.fit(X_train,y_train)print(lr.predict(X_test))print(lr.predict_proba(X_test))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/596090.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

“人性化设计”技术概要

本文是由《埃森哲技术愿景 2024:“人性化设计”技术将通过提高生产力和创造力来重塑行业并重新定义领导者》这个文章来翻译解读的。原文地址如下,大家可以自行下载: 下载地址 其实看到这篇文章的时候,联想到这些年机器人的市场发展…

算法设计与分析实验报告c++java实现(ACM面试题、字符串匹配算法、循环赛日程安排问题、分治法求解最大连续子序列和、动态规划法求解最大连续子序列和)

一、 实验目的 1.加深学生对算法设计方法的基本思想、基本步骤、基本方法的理解与掌握; 2.提高学生利用课堂所学知识解决实际问题的能力; 3.提高学生综合应用所学知识解决实际问题的能力。 二、实验任务 1、【ACM、…

GitHub入门与实践

ISBN: 978-7-115-39409-5 作者:【日】大塚弘记 译者:支鹏浩、刘斌 页数:255页 阅读时间:2023-08-05 推荐指数:★★★★★ 好久之前读完的了,一直没有写笔记。 这本入门Git的书籍还是非常推荐的,…

大数据毕业设计Python+Spark知识图谱高考志愿推荐系统 高考数据分析 高考可视化 高考大数据 计算机毕业设计 机器学习 深度学习 人工智能

附件3 文山学院本科生毕业论文(设计)开题报告 姓名 性别 学号 学院 专业 年级 论文题目 基于协同过滤算法的高考志愿推荐系统的设计与实现 □教师推荐题目 □自拟题目 题目来源 题目类别 指导教师 选题的目的、意义(理论…

二叉树进阶——手撕二叉搜索树

troop主页:troop 手撕二叉搜索树 1.二叉搜索树的定义2.实现(非递归)补充结构2.1查找2.2插入2.3删除(重要)情况1(无孩子&&一个孩子) 3.二叉搜索树的应用3.1K模型3.2KV模型3.2.1KV模型的实现 总结二叉…

【芯片设计- RTL 数字逻辑设计入门 1.2 -- Verdi 原理图查看】

请阅读【芯片设计 RTL 数字逻辑设计扫盲 】 文章目录 Verdi 原理图查看显示原理图各信号名信号查找信号追踪 Verdi 原理图查看 这里以D触发器的RTL 实现为例来简单介绍如何在Verdi 中查看原理图,具体RTL code 如下: 可以按照下面步骤来查看原理图&…

【C++】map set 底层刨析

文章目录 1. 红黑树的迭代器2. 改造红黑树3. map 的模拟实现4. set 的模拟实现 在 C STL 库中,map 与 set 的底层为红黑树,那么在不写冗余代码的情况下使用红黑树同时实现 map 与 set 便是本文的重点。 1. 红黑树的迭代器 迭代器的好处是可以方便遍历&…

3d代理模型怎么转换成标准模型---模大狮模型网

在当今的虚拟世界中,3D建模技术被广泛运用于游戏开发、电影制作、工业设计等领域。在3D建模过程中,有时会遇到需要将代理模型转换成标准模型的情况。模大狮将从理论和实践两方面,介绍如何将3D代理模型转换成标准模型,以帮助读者更…

java日志框架简介

文章目录 概要常用日志框架常见框架有以下:slf4j StaticLoggerBinder绑定过程(slf4j-api-1.7.32 )JCL 运行时动态查找过程:(commons-logging-1.2)使用桥接修改具体日志实现 一行日志的打印过程开源框架日志…

C++进阶--C++11(2)

C11第一篇 C11是C编程语言的一个版本,于2011年发布。C11引入了许多新特性,为C语言提供了更强大和更现代化的编程能力。 可变参数模板 在C11中,可变参数模板可以定义接受任意数量和类型参数的函数模板或类模板。它可以表示0到任意个数&…

关于swagger配置

swagger有多种样式&#xff0c;有些比较难用&#xff0c;如下界面比较友好 1.推荐对应的jar包如下 <!--swagger相关--> <dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version>2.7.0<…

MYSQL 锁机制 与 MVCC多版本并发

MYSQL锁机制与优化以及MVCC底层原理 锁分类 乐观锁&#xff0c;悲观锁 从性能上分为乐观锁&#xff08;版本对比,版本一致就更新&#xff0c;不一致就不更新或CAS机制&#xff09;和悲观锁&#xff08;锁住资源等待&#xff09;&#xff0c;乐观锁适合读比较多的场景&#x…