极客时间: 用 Word2Vec, LangChain, Gemma 模拟全本地检索增强生成(RAG)

  每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

最近,Apple的研究人员推出了ReALM,紧随Google的Gemma、Meta的Llama以及微软的其他几个产品之后,完全本地运行大型语言模型(LLM)的应用越来越受到关注。我在《宅乐时光:用Gemma在本地玩LangChain 2》中尝试了本地运行Langchain,唯一缺失的是嵌入部分。为了在本地完整模拟RAG,我在以下代码中添加了word2vec嵌入。

import json
import numpy as np
from gensim.models import KeyedVectors
from langchain_community.llms import Ollama 
import logging# 基础日志配置
logging.basicConfig(level=logging.INFO)# 使用预训练的Word2Vec模型计算嵌入
def compute_embeddings(text, embedding_model):words = [word for word in text.split() if word in embedding_model.key_to_index]if words:return np.mean([embedding_model[word] for word in words], axis=0)else:return np.zeros(embedding_model.vector_size)# 加载预训练的Word2Vec嵌入
try:model_path = 'GoogleNews-vectors-negative300.bin'  # 模型下载正确路径embedding_model = KeyedVectors.load_word2vec_format(model_path, binary=True)
except Exception as e:logging.error(f"加载Word2Vec模型失败: {e}")# 从JSON加载数据
try:with open('my_data.json', 'r') as file:data = json.load(file)
except Exception as e:logging.error(f"加载JSON数据错误: {e}")data = []def simulate_rag(data, prompt):matches = []threshold = 0.4  # 余弦相似度示例阈值prompt_embedding = compute_embeddings(prompt, embedding_model)for passage in data:combined_text = f"{passage['title']} {passage['content']}".lower()passage_embedding = compute_embeddings(combined_text, embedding_model)similarity = np.dot(prompt_embedding, passage_embedding) / (np.linalg.norm(prompt_embedding) * np.linalg.norm(passage_embedding))print(f"passage: {passage}")print(f"Similarity: {similarity}")if similarity > threshold:matches.append(passage)return matches[:2]  # 返回前2个检索的段落prompt = "Nedved Yang喜欢吃什么?你能推荐新加坡的哪个地方给他吃吗?"# 从本地数据检索相关段落
retrieved_passages = simulate_rag(data, prompt)
print(f"**检索到的段落:**\n{retrieved_passages}")# 构建LLM提示
llm_prompt = f"用户查询: {prompt}\n\n检索到的信息:\n"
for passage in retrieved_passages:llm_prompt += f"- {passage['title']}:\n  - {passage['content']}\n  - 来源: {passage['source']}\n"print(f"**LLM提示:**\n{llm_prompt}")
llm = Ollama(model="gemma:2b")
llm_response = llm.invoke(llm_prompt)  # 替换您的LLM交互方法
final_response = f"**LLM回应:**\n{llm_response}"# 打印最终回应
print(final_response)

在使用word2vec进行本地嵌入前,您需要从网上下载它,例如从​​​​​​https://github.com/harmanpreet93/load-word2vec-google?tab=readme-ov-file。然后,您可以加载它来计算嵌入。我遇到了一个问题,即`retrieved_passages`返回为空。通过下面的手动测试,我发现根本原因是相似度低于阈值。

# 示例手动测试prompt_embedding = compute_embeddings("Nedved Yang喜欢吃什么?", embedding_model)
example_entry = "Nedved Yang喜欢辛辣和素食菜肴。"
entry_embedding = compute_embeddings(example_entry, embedding_model)
similarity = np.dot(prompt_embedding, entry_embedding) / (np.linalg.norm(prompt_embedding) * np.linalg.norm(entry_embedding))
print(f"Similarity: {similarity}")

在调整阈值后,来自Gemma的回应看起来不错。

试试看,玩得开心!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/596107.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动驾驶执行层 - 线控底盘基础原理(非常详细)

自动驾驶执行层 - 线控底盘基础原理(非常详细) 附赠自动驾驶学习资料和量产经验:链接 1. 前言 1.1 线控的对象 在自动驾驶行业所谓的“感知-定位-决策-执行”的过程中,在末端的执行层,车辆需要自主执行决策层所给出的指令,具体…

c# wpf LiveCharts 绑定 多线条 简单试验

1.概要 c# wpf LiveCharts 绑定 多线条 简单试验 2.代码 <Window x:Class"WpfApp3.Window4"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http:…

gulp项目配置,压缩css,压缩js,进行监听文件改动

1&#xff0c;创建项目 npm install -g gulp这个应该很熟悉&#xff0c;就是全局安装gulp 2&#xff0c;创建一个工程&#xff0c;使用node创建&#xff0c;统一命令 npm init -y3,创建后&#xff0c;目录出现一个package.json文件&#xff0c;没错&#xff0c;就是我们用vu…

Vue 有哪些常用的指令

目录 1. 指令 v-html 1.1. 作用 1.2. 语法 1.3. 练习 2. 指令 v-show 2.1. 作用 2.2. 语法 3. 原理 4. 场景 3. 指令 v-if 3.1. 作用 3.2. 语法 3.3. 原理 3.4. 场景 4. 指令 v-else与 v-else-if 4.1. 作用 4.2. 语法 4.3. 注意 4.4. 使用场景 5. 指令 v-on 5…

[VulnHub靶机渗透] pWnOS 2.0

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java、PHP】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收…

可行驶区域(freespace)如何标注

可行驶区域&#xff08;freespace&#xff09;如何标注 附赠自动驾驶学习资料和量产经验&#xff1a;链接 可行驶区域的检测主要是为自动驾驶提供路径规划辅助&#xff0c;可以实现整个的路面检测&#xff0c;也可以只提取出部分的道路信息&#xff0c;不同的环境&#xff0c…

【机器学习】科学库使用第3篇:机器学习概述,学习目标【附代码文档】

机器学习&#xff08;科学计算库&#xff09;完整教程&#xff08;附代码资料&#xff09;主要内容讲述&#xff1a;机器学习&#xff08;常用科学计算库的使用&#xff09;基础定位、目标&#xff0c;机器学习概述定位,目标,学习目标,学习目标,1 人工智能应用场景,2 人工智能小…

1、认识MySQL存储引擎吗?

目录 1、MySQL存储引擎有哪些&#xff1f; 2、默认的存储引擎是哪个&#xff1f; 3、InnoDB和MyISAM有什么区别吗&#xff1f; 3.1、关于事务 3.2、关于行级锁 3.3、关于外键支持 3.4、关于是否支持MVCC 3.5、关于数据安全恢复 3.6、关于索引 3.7、关于性能 4、如何…

【鲜货】企业数据治理的首要一步:数据溯源

目录 背景 一、数据探索溯源的定义 二、数据探索溯源的重要性 1、提高数据质量 2、增强数据信任度 3、促进数据合规性 三、数据溯源的主要方法 1、标注法 2、反向查询法 3、双向指针追踪法 四、数据探索溯源的主要步骤 1、确定溯源目标 2、收集元数据 3、分析数据…

深入浅出 -- 系统架构之负载均衡Nginx资源压缩

一、Nginx资源压缩 建立在动静分离的基础之上&#xff0c;如果一个静态资源的Size越小&#xff0c;那么自然传输速度会更快&#xff0c;同时也会更节省带宽&#xff0c;因此我们在部署项目时&#xff0c;也可以通过Nginx对于静态资源实现压缩传输&#xff0c;一方面可以节省带宽…

机器学习模型——逻辑回归

https://blog.csdn.net/qq_41682922/article/details/85013008 https://blog.csdn.net/guoziqing506/article/details/81328402 https://www.cnblogs.com/cymx66688/p/11363163.html 参数详解 逻辑回归的引出&#xff1a; 数据线性可分可以使用线性分类器&#xff0c;如果…

“人性化设计”技术概要

本文是由《埃森哲技术愿景 2024&#xff1a;“人性化设计”技术将通过提高生产力和创造力来重塑行业并重新定义领导者》这个文章来翻译解读的。原文地址如下&#xff0c;大家可以自行下载&#xff1a; 下载地址 其实看到这篇文章的时候&#xff0c;联想到这些年机器人的市场发展…