[NOIP2017 提高组] 奶酪
题目背景
NOIP2017 提高组 D2T1
题目描述
现有一块大奶酪,它的高度为 h h h,它的长度和宽度我们可以认为是无限大的,奶酪中间有许多半径相同的球形空洞。我们可以在这块奶酪中建立空间坐标系,在坐标系中,奶酪的下表面为 z = 0 z = 0 z=0,奶酪的上表面为 z = h z = h z=h。
现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。如果两个空洞相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个空洞,特别地,如果一个空洞与下表面相切或是相交,Jerry 则可以从奶酪下表面跑进空洞;如果一个空洞与上表面相切或是相交,Jerry 则可以从空洞跑到奶酪上表面。
位于奶酪下表面的 Jerry 想知道,在不破坏奶酪的情况下,能否利用已有的空洞跑 到奶酪的上表面去?
空间内两点 P 1 ( x 1 , y 1 , z 1 ) P_1(x_1,y_1,z_1) P1(x1,y1,z1)、 P 2 ( x 2 , y 2 , z 2 ) P2(x_2,y_2,z_2) P2(x2,y2,z2) 的距离公式如下:
d i s t ( P 1 , P 2 ) = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 \mathrm{dist}(P_1,P_2)=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2} dist(P1,P2)=(x1−x2)2+(y1−y2)2+(z1−z2)2
输入格式
每个输入文件包含多组数据。
第一行,包含一个正整数 T T T,代表该输入文件中所含的数据组数。
接下来是 T T T 组数据,每组数据的格式如下: 第一行包含三个正整数 n , h , r n,h,r n,h,r,两个数之间以一个空格分开,分别代表奶酪中空洞的数量,奶酪的高度和空洞的半径。
接下来的 n n n 行,每行包含三个整数 x , y , z x,y,z x,y,z,两个数之间以一个空格分开,表示空洞球心坐标为 ( x , y , z ) (x,y,z) (x,y,z)。
输出格式
T T T 行,分别对应 T T T 组数据的答案,如果在第 i i i 组数据中,Jerry 能从下表面跑到上表面,则输出 Yes
,如果不能,则输出 No
。
样例 #1
样例输入 #1
3
2 4 1
0 0 1
0 0 3
2 5 1
0 0 1
0 0 4
2 5 2
0 0 2
2 0 4
样例输出 #1
Yes
No
Yes
提示
【输入输出样例 1 1 1 说明】
第一组数据,由奶酪的剖面图可见:
第一个空洞在 ( 0 , 0 , 0 ) (0,0,0) (0,0,0) 与下表面相切;
第二个空洞在 ( 0 , 0 , 4 ) (0,0,4) (0,0,4) 与上表面相切;
两个空洞在 ( 0 , 0 , 2 ) (0,0,2) (0,0,2) 相切。
输出 Yes
。
第二组数据,由奶酪的剖面图可见:
两个空洞既不相交也不相切。
输出 No
。
第三组数据,由奶酪的剖面图可见:
两个空洞相交,且与上下表面相切或相交。
输出 Yes
。
【数据规模与约定】
对于 20 % 20\% 20% 的数据, n = 1 n = 1 n=1, 1 ≤ h 1 \le h 1≤h, r ≤ 1 0 4 r \le 10^4 r≤104,坐标的绝对值不超过 1 0 4 10^4 104。
对于 40 % 40\% 40% 的数据, 1 ≤ n ≤ 8 1 \le n \le 8 1≤n≤8, 1 ≤ h 1 \le h 1≤h, r ≤ 1 0 4 r \le 10^4 r≤104,坐标的绝对值不超过 1 0 4 10^4 104。
对于 80 % 80\% 80% 的数据, 1 ≤ n ≤ 1 0 3 1 \le n \le 10^3 1≤n≤103, 1 ≤ h , r ≤ 1 0 4 1 \le h , r \le 10^4 1≤h,r≤104,坐标的绝对值不超过 1 0 4 10^4 104。
对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 1 × 1 0 3 1 \le n \le 1\times 10^3 1≤n≤1×103, 1 ≤ h , r ≤ 1 0 9 1 \le h , r \le 10^9 1≤h,r≤109, T ≤ 20 T \le 20 T≤20,坐标的绝对值不超过 1 0 9 10^9 109。
AC代码:
#include<bits/stdc++.h>
using namespace std;typedef long long ll;
typedef pair<int, int>PII;
const int N=3e5+10;
const int MOD=9901;
const int INF=0X3F3F3F3F;
const int dx[]={-1,1,0,0,-1,-1,+1,+1};
const int dy[]={0,0,-1,1,-1,+1,-1,+1};
const int M = 1e6 + 10;int t;
int n, h, r;
int p[N];
struct q{int x;int y;int z;
}q[N];int finds(int x)
{if(p[x] != x) p[x] = finds(p[x]);return p[x];
}
int main()
{cin >> t;while(t --){cin >> n >> h >> r;for(int i = 0; i <= n + 1; i ++) p[i] = i;for(int i = 1; i <= n; i ++){int x, y, z;cin >> x >> y >> z;q[i] = {x, y, z};if(abs(z) <= r) p[finds(i)] = finds(0);if(abs(z - h) <= r) p[finds(i)] = finds(n + 1);//合并}for(int i = 1; i <= n; i ++){for(int j = 1; j < i; j ++)//j相当于是父亲{ll dx = q[i].x - q[j].x;ll dy = q[i].y - q[j].y;ll dz = q[i].z - q[j].z;if(dx * dx + dy * dy + dz * dz <= (4 * (ll)r * r)){p[finds(i)] = finds(j);}}}if(finds(0) == finds(n + 1)) puts("Yes");else puts("No");}
}