2024.4.19 Python爬虫复习day07 可视化3

综合案例

需求:

已知2020年疫情数据,都是json数据,需要从文件中读出,进行处理和分析,最终实现数据可视化折线图
在这里插入图片描述

相关知识点:

json

json简介: 本质是一个特定格式的字符串      举例:  '[{},{},{}]' 或者 '{}'python中json包: import jsonpython数据转为json数据:  变量接收json数据 = json.dumps(python字典或者列表)json数据转为python数据:  变量接收python字典或者列表 = json.loads(json数据)

pyecharts

pyecharts简介: python版本的echarts可视化工具使用pyecharts包: 先安装pyecharts,再导包:  import pyecharts可以制作不同种类的图表,示例如下:制作饼图: from pyecharts.charts import Pie制作地图: from pyecharts.charts import Map制作折线图: from pyecharts.charts import Line制作柱状图: from pyecharts.charts import Bar制作图表步骤,如下:1.导包2.创建对象3.添加数据4.设置全局选项5.渲染成页面

代码:

前提是: 把资料中的疫情数据目录复制到项目中

自定义模块:

此模块目的是为了重复去读取各个国家疫情数据

read_json_file.py模块代码如下:

# 导包
import json# 定义一个函数用于处理和分析各个国家的疫情数据
def get_data_2020(file_path, rep_str):"""此函数用于处理和分析各个国家的疫情数据:param file_path: json文件路径:param rep_str: 要替换的json数据开头子串:return: 返回的是元组(日期数据,确诊数据)"""# 一.数据处理: 抽取  转换  加载# 1.抽取: 读取文件中json数据with open(file_path, 'r', encoding='utf8') as f:json_data = f.read()# 打印数据,测试是否成功读取,注意: 测试完可以注释或者删除# print(json_data)# 2.转换: 把json数据中无效的数据清洗过滤掉# 去除开头的'jsonp_1629344292311_69436('json_data = json_data.replace(rep_str, '')# 去除结尾的');'json_data = json_data[:-2]# 3.加载: 把json数据转为python容器dict_data = json.loads(json_data)# 打印数据,测试是否成功读取,注意: 测试完可以注释或者删除# print(dict_data)# print(type(dict_data))# 二.数据分析: 海量数据提取对自己有价值的部分数据# 再次明确目的: 做2020年各个国家确诊人数折线图# 分析哪些是有价值的数据? 2020年的 updateDate对应日期数据  以及  '确诊'的data数据# 1.先分别获取国家所有的日期数据以及确诊数据update = dict_data['data'][0]['trend']['updateDate']data = dict_data['data'][0]['trend']['list'][0]['data']# 2.获取2020年的日期数据: 核心就是获取到2020年的截止索引time_2020 = update[:update.index('12.31') + 1]# print(2020update)# 3.获取2020年确诊数据: 核心就是获取到2020年的截止索引data_2020 = data[:update.index('12.31') + 1]# print(uas_2020data)# 返回最终结果 默认放到元组容器中(a,b)return time_2020, data_2020

测试模块:

# 下述导自定义模块模块报错,因为模块名称不能以数字开头
# import 02_自定义读取文件模块.py# 改名后再导自定义模块正常,因为模块名符合标识符规则
import read_json_file# 测试自定义模块是否能够使用
# 1.获取美国的2020年疫情数据
r1 = read_json_file.get_data_2020('疫情数据/美国.txt', 'jsonp_1629344292311_69436(')
print(r1)
# 2.获取日本的2020年疫情数据
r2 = read_json_file.get_data_2020('疫情数据/日本.txt', 'jsonp_1629350871167_29498(')
print(r2)
# 3.获取美国的2020年疫情数据
r3 = read_json_file.get_data_2020('疫情数据/印度.txt', 'jsonp_1629350745930_63180(')
print(r3)

数据可视化:

# 1.导包
from pyecharts.charts import Line
from read_json_file import get_data_2020
import pyecharts.options as opts# 2.创建对象
line = Line(init_opts=opts.InitOpts(width='1500px', height='800px'))
# 3.添加数据(x和y轴)
# 先读取数据
us_all_data20 = get_data_2020('疫情数据/美国.txt', 'jsonp_1629344292311_69436(')
jp_all_data20 = get_data_2020('疫情数据/日本.txt', 'jsonp_1629350871167_29498(')
in_all_data20 = get_data_2020('疫情数据/印度.txt', 'jsonp_1629350745930_63180(')
# 再添加数据
line.add_xaxis(jp_all_data20[0])
# 由于三个数据个数不一致,会导致数据错位
# us数据列表头添加1个0元素
us_all_data20[1].insert(0, 0)
# in数据前面添加46个0元素
# 采用列表推导式快速生成多个0列表,然后和原有列表拼接成新的一个列表
zero_list = [i * 0 for i in range(46)]
in_all_data20 = zero_list + in_all_data20[1]# 添加数据
line.add_yaxis('us数据', us_all_data20[1], symbol_size=10,linestyle_opts=opts.LineStyleOpts(width=5))
line.add_yaxis('jp数据', jp_all_data20[1], symbol_size=10)
line.add_yaxis('in数据', in_all_data20, symbol_size=10, label_opts=opts.LabelOpts(is_show=False))# 4.设置全局选项
line.set_global_opts(title_opts=opts.TitleOpts(title='2020印美日累计确诊人数折线图',pos_left='center',pos_bottom='1%'),yaxis_opts=opts.AxisOpts(name='确诊人数'),xaxis_opts=opts.AxisOpts(name='时间'),legend_opts=opts.LegendOpts(pos_top='1%')
)
# 5.渲染成页面
line.render('2020印美日累计确诊人数折线图.html')

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/618276.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解计算机网络分层结构

一、 为什么要分层? 计算机网络分层的主要目的是将复杂的网络通信过程分解为多个相互独立的层次,每个层次负责特定的功能。这样做有以下几个好处: 模块化设计:每个层次都有清晰定义的功能和接口,使得网络系统更易于设…

通讯录的实现(顺序表版本)

我们知道通讯录是基于顺序表的前提下,要写好通讯录我们就要深入了解好顺序表。我们先来看看什么是顺序表。(注意今天代码量有点多,坚持一下)。冲啊!兄弟们! 顺序表的简单理解 对于顺序表,我们首…

HTML常用标签

标签页(title): ~title 表示标题标签,文字会显示到标签页 ~主要与SEO有关(了解) (搜索引擎在抓取页面时,会通过title来识别网站内容) 标题(共6级)…

深入理解DES算法:原理、实现与应用

title: 深入理解DES算法:原理、实现与应用 date: 2024/4/14 21:30:21 updated: 2024/4/14 21:30:21 tags: DES加密对称加密分组密码密钥管理S盒P盒安全性分析替代算法 DES算法简介 历史 DES(Data Encryption Standard)算法是由IBM研发&…

二极管分类及用途

二极管分类及用途 通用开关二极管 特点:电流小,工作频率高 选型依据:正向电流、正向压降、功耗,反向最大电压,反向恢复时间,封装等 类型:BAS316 ; IN4148WS 应用电路: 说明:应用…

c/c++普通for循环学习

学习一下 for 循环的几种不同方式,了解一下原理及差异 完整的测试代码参考 GitHub :for 循环测试代码 1 常用形态 对于 for 循环来说,最常用的形态如下 for (表达式1; 表达式2; 表达式3) {// code }流程图如下: 编写测试代码…

5、JVM-G1详解

G1收集器 -XX:UseG1GC G1 (Garbage-First)是一款面向服务器的垃圾收集器,主要针对配备多颗处理器及大容量内存的机器. 以极高概率满足GC停顿时间要求的同时,还具备高吞吐量性能特征. G1将Java堆划分为多个大小相等的独立区域(Region),JVM目标…

WXML模板语法-条件与列表渲染

wx:if 在小程序中&#xff0c;使用wx:if"{{condition}}"来判断是否需要渲染该代码 也可以用wx:elif和wx:else来添加else判断 <!--pages/ifIndex/ifindex.wxml--> <view wx:if"{{type 1}}">男</view> <view wx:elif"{{type …

人工智能轨道交通行业周刊-第77期(2024.4.1-4.14)

本期关键词&#xff1a;货车巡检机器人、铁路安全技防、车辆换长、阿里千问、大模型创业 1 整理涉及公众号名单 1.1 行业类 RT轨道交通人民铁道世界轨道交通资讯网铁路信号技术交流北京铁路轨道交通网铁路视点ITS World轨道交通联盟VSTR铁路与城市轨道交通RailMetro轨道世界…

地球上四大洋介绍

地球上四大洋的分布是&#xff1a; 太平洋&#xff1a;太平洋是世界上最大的海洋&#xff0c;覆盖了约三分之一的地球表面。它位于亚洲、澳大利亚、美洲和南极洲之间。太平洋的面积约为1.6亿平方公里&#xff0c;拥有世界上最深的点——马里亚纳海沟。 大西洋&#xff1a;大西…

【C++]C/C++的内存管理

这篇博客将会带着大家解决以下几个问题 1. C/C内存分布 2. C语言中动态内存管理方式 3. C中动态内存管理 4. operator new与operator delete函数 5. new和delete的实现原理 6. 定位new表达式(placement-new) 1. C/C内存分布 我们先来看下面的一段代码和相关问题 int global…

杰发科技AC7840——CAN通信简介(3)_时间戳

0. 时间戳简介 时间戳表示的是收到该CAN消息的时刻&#xff0c;通过连续多帧的时间戳&#xff0c;可以计算出CAN消息的发送周期&#xff0c;也可以用于判断CAN消息是否被持续收到。 1. 使用步骤 注意分别是发送和接收的功能&#xff1a; 2. 现象分析_接收时间戳 看下寄存器的…