嵌入式MCU BootLoader开发配置详细笔记教程

目录

一、BootLoader基础

二、BootLoader原理及配置

三、BootLoader程序

bootloader.h

bootloader.c

四、Application1 用户程序

application1.h

application1.c

五、Application2 用户程序

application2.h

六、程序运行效果

七、工程文件Demo


一、BootLoader基础

        对于接触过嵌入式Linux系统开发的开发者们,想必对BootLoader是不陌生的,因为定制化移植Linux系统,最先接触的就是BootLoader程序。但如果是从单片机MCU起步的开发者,可能对BootLoader就不是那么熟悉了,因为单片机开发最先接触的往往是GPIO外设的驱动开发。但不管是嵌入式Linux的MPU开发,还是嵌入式单片机的MCU开发,BootLoader的功能都是一样的。它是嵌入式系统中一种特殊的软件程序,它在系统加电或复位后最先执行,负责初始化硬件设备、设置系统环境,并最终引导加载操作系统内核或用户指定的应用程序。BootLoader 起到了桥梁的作用,连接了硬件启动与高级软件运行之间的环节,确保系统能够从一个初始、裸机的状态过渡到一个完整的、可操作的运行环境。

        当然,除了嵌入式开发者们,对于喜欢DIY装机的极客们,对于BootLoader应该也是不陌生的,并且经常接触到它,如电脑在安装或开启Windows时的BIOS界面,本质上也是一个BootLoader引导程序。如下图为常见的BootLoader显示的GUI界面图。

如下例举的是一些BootLoader 的主要功能和作用:

①、硬件初始化:

  • 开启和配置基本的硬件模块,如CPU、时钟、内存控制器、中断控制器、串口、GPIO等,使它们进入工作状态。
  • 设置堆栈、中断向量表等关键数据结构,为后续软件执行做好准备。

②、内存管理:

  • 建立内存空间映射图,识别可用的RAM区域及其大小,为操作系统内核分配合适的运行空间。
  • 对于使用MMU(Memory Management Unit)的系统,可能还需要设置内存分页和映射规则。

③、引导加载操作系统:

  • 从非易失性存储器(如Flash、EEPROM、NAND/NOR Flash等)中读取并验证操作系统的内核映像。
  • 将内核映像加载到RAM中指定的位置,并按照内核所需的特定格式设置启动参数和环境变量。

④、固件升级:

  • 提供一种安全机制,允许在运行时通过网络、串口、USB等接口接收新的固件映像,并将其写入非易失性存储器,实现设备的远程或本地固件更新。

⑤、系统诊断与恢复:

  • 可能包含简单的故障检测和恢复机制,如硬件自检、低级别固件修复、安全模式启动等功能,帮助在系统启动失败时进行故障排查和恢复。

⑥、多重引导支持:

  • 在某些系统中,BootLoader 可能支持选择加载不同的操作系统版本或应用程序,提供多启动选项,增强系统的灵活性和可定制性。

        目前BootLoader 的应用广泛存在于各种嵌入式系统中,如消费电子领域中,随处可见的智能手机,智能电脑,智能手表、路由器等。在汽车电子领域的车载系统ADAS(Advanced Driver Assistance Systems)模块、ECU(Electronic Control Units)等,及医疗设备领域的便携式医疗仪器、监护设备、植入式医疗器械等。基本上有电子产品的地方,都能看到BootLoader的身影,因此掌握BootLoader是从事嵌入式开发的一项非常基本的技能。

二、BootLoader原理及配置

        本文主要是针对单片机MCU设备进行BootLoader的配置讲解,目标设备为STM32G431,开发平台是MDK KEIL V5以上

        如下图所示是FLASH中的数据分布图,可见FLASH的用户代码区域的起始程序为BootLoader引导程序,然后紧接着的是应用程序APP1和应用程序APP2。

        其中,BootLoader和APP1及APP2都是完整的用户代码程序,但因BootLoader只起一个引导跳转APP启动操作,所以占用的FLASH内存空间较小。

        提醒:App的个数可以根据实际需求进行设置,只要不超过FLASH的内存空间大小限制即可,为了效果展示,在本文中设置了一个BootLoader程序,两个APP应用程序进行切换。

        如下图所示的是,Bootloader、App1、App2在FLASH中的内存地址映射图。在BootLoader的程序配置好后,根据触发条件的不同,会自动跳转到不同的APP应用程序。

        BootLoader和APP应用程序的启动跳转切换,原理上就是内存地址的切换,当BootLoader程序接收到对应的操作触发条件时,会进行相应的地址跳转切换,及一些其它的附加操作,然后执行该地址空间上的用户程序。但一般来说,BootLoader中会进行CPU工作模式、配置内存控制器、初始化外设等工作,为后续程序运行创建一个稳定的硬件环境。所以在APP中可以节省掉BootLoader中已经进行过的硬件环境配置。

        如下图所示为《STM32G4系列微控制器参考手册》官方文件中截图下来的,STM32的FLASH中是按块进行读写操作的,所以内存空间配置时,必须以块为最小单元分配

如何配置BootLoader及APP应用程序的下载烧录?

①、单击魔术棒

②、选择Target

③、修改IROM1中的Start地址数据及Size数据

        修改Size空间的大小时,需要先确定程序编译后的内存大小是多少,如果内存空间配置不够,会导致编译及下载报错。如下图所示为查看程序编译后需要的内存空间大小的方式。     

三、BootLoader程序

bootloader.h

#ifndef __BOOTLOADER_H
#define __BOOTLOADER_H#include "main.h"#define FLASH_BASE_ADDR    (uint32_t)(0x08000000)//BootLoader   预留10KB的FLASH空间 --- (0x0800 0000 --> 0x0800 27FF)
//Application1 预留20KB的FLASH空间 --- (0x0800 2800 --> 0x0800 77FF)
//Application2 预留20KB的FLASH空间 --- (0x0800 7800 --> 0x0800 C7FF)#define BOOT_BASE_ADDR    FLASH_BASE_ADDR
#define APP1_BASE_ADDR    (uint32_t)(0x08002800)
#define APP2_BASE_ADDR    (uint32_t)(0x08007800)#define KEY_DOWN    GPIO_PIN_RESET
#define KEY_UP        GPIO_PIN_SET#define LED1    LED1_LCD8_Pin
#define LED2    LED2_LCD9_Pin
#define LED3    LED3_LCD10_Pin
#define LED4    LED4_LCD11_Pin
#define LED5    LED5_LCD12_Pin
#define LED6    LED6_LCD13_Pin
#define LED7    LED7_LCD14_Pin
#define LED8    LED8_LCD15_Pin#define LED_ON    GPIO_PIN_RESET
#define LED_OFF    GPIO_PIN_SETextern volatile uint8_t key1_flag;
extern volatile uint8_t key2_flag;void BootLoader_Code(void);void Key_San(void);
void LED_Control(int led, int state);
void LED_Close_All(void);#endif

bootloader.c

#include "bootloader.h"typedef  void (*pFunction)(void);pFunction Boot_Jump_to_App;uint32_t jump_addr;#if 0
//初始化用户栈指针汇编程序
__ASM void __set_MSP(uint32_t mainStackPointer)
{msr msp, r0bx lr
}
#endif/*** @brief  BootLoader程序* @param  None* @retval None*/
void BootLoader_Code(void)
{LED_Close_All();printf("------------Hello BootLoader V 1.0---------\r\n");printf("------------Editor:牛马大师兄--------------\r\n\r\n");printf("------------Press KEY1 Boot APP1-----------\r\n");printf("------------Press KEY2 Boot APP2-----------\r\n");//扫描按键状态,根据按键跳转到相应的APP程序while(1){Key_San();if(key1_flag==1||key2_flag==1){break;}}if(key1_flag == 1){//检查用户代码1的栈顶地址,是否位于0x20000000~0x2001ffff内。if (((*(volatile uint32_t*)APP1_BASE_ADDR) & 0x2FFE0000 ) == 0x20000000){printf("\r\n-------------- APP1 Starting --------------\r\n");//屏蔽所有中断,防止跳转过程中,中断干扰__disable_irq();//用户代码的第二个字,为程序开始地址(复位地址)jump_addr = *(volatile uint32_t*)(APP1_BASE_ADDR+4);Boot_Jump_to_App = (pFunction)jump_addr;//初始化用户栈指针__set_MSP(*(volatile uint32_t*) APP1_BASE_ADDR);//用户程序跳转Boot_Jump_to_App();}}else if(key2_flag == 1){//检查用户代码2的栈顶地址,是否位于0x20000000~0x2001ffff内。if (((*(volatile uint32_t*)APP2_BASE_ADDR) & 0x2FFE0000 ) == 0x20000000){printf("\r\n-------------- APP2 Starting --------------\r\n");//屏蔽所有中断,防止跳转过程中,中断干扰__disable_irq();//用户代码的第二个字,为程序开始地址(复位地址)jump_addr = *(volatile uint32_t*)(APP2_BASE_ADDR+4);Boot_Jump_to_App = (pFunction)jump_addr;//初始化用户栈指针__set_MSP(*(volatile uint32_t*) APP2_BASE_ADDR);//用户程序跳转Boot_Jump_to_App();}}
}volatile uint8_t key1_flag = 0;
volatile uint8_t key2_flag = 0;/*** @brief  按键扫描程序* @param  None* @retval None*/
void Key_San(void)
{if(HAL_GPIO_ReadPin(GPIOB, KEY1_Pin) == KEY_DOWN){HAL_Delay(10);if(HAL_GPIO_ReadPin(GPIOC, KEY1_Pin) == KEY_DOWN){key1_flag = 1;printf("\r\n--------------- KEY 1 PRESS ---------------\r\n");LED_Control(LED1, LED_ON);}}if(HAL_GPIO_ReadPin(GPIOB, KEY2_Pin) == KEY_DOWN){HAL_Delay(10);if(HAL_GPIO_ReadPin(GPIOC, KEY1_Pin) == KEY_DOWN){key2_flag = 1;printf("\r\n--------------- KEY 2 PRESS ---------------\r\n");LED_Control(LED2, LED_ON);}}
}
/*** @brief  LED控制程序* @param  led:操作的LED灯* @param  state:LED的状态* @retval None*/
void LED_Control(int led, int state)
{HAL_GPIO_WritePin(GPIOC, led, state);    HAL_GPIO_WritePin(LED_LOCK_GPIO_Port, LED_LOCK_Pin, GPIO_PIN_SET);HAL_GPIO_WritePin(LED_LOCK_GPIO_Port, LED_LOCK_Pin, GPIO_PIN_RESET);
}
/*** @brief  关闭全部的LED指示灯* @param  None* @retval None*/
void LED_Close_All(void)
{HAL_GPIO_WritePin(GPIOC, LED6_LCD13_Pin|LED7_LCD14_Pin|LED8_LCD15_Pin|LED1_LCD8_Pin|LED2_LCD9_Pin|LED3_LCD10_Pin|LED4_LCD11_Pin|LED5_LCD12_Pin, GPIO_PIN_SET);HAL_GPIO_WritePin(LED_LOCK_GPIO_Port, LED_LOCK_Pin, GPIO_PIN_SET);HAL_GPIO_WritePin(LED_LOCK_GPIO_Port, LED_LOCK_Pin, GPIO_PIN_RESET);
}

        主函数中对BootLoader程序进行调用

        修改BootLoader程序烧录地址及内存空间大小

四、Application1 用户程序

application1.h

#ifndef __APPLICATION_H
#define __APPLICATION_H#include "main.h"#define APP1_VECT_ADDR_OFFSET    0x2800void App1_Code(void);#endif

application1.c

#include "application1.h"/*** @brief  App1应用程序* @param  None* @retval None*/
void App1_Code(void)
{//设置中断向量偏移表SCB->VTOR = FLASH_BASE | APP1_VECT_ADDR_OFFSET;//使能全局中断--不使能会出现异常__enable_irq();//APP1中的业务代码程序printf("--------- Welcome to Application 1 --------\r\n");LCD_Init();LCD_SetBackColor(Black);LCD_SetTextColor(White);LCD_Clear(Black);HAL_Delay(200);LCD_DisplayStringLine(Line4, (unsigned char *)"    Application 1    ");    }

         主函数中对App1程序进行调用

        修改App1程序烧录地址及内存空间大小

五、Application2 用户程序

application2.h

#ifndef __APPLICATION_H
#define __APPLICATION_H#include "main.h"#define APP2_VECT_ADDR_OFFSET    0x7800void App2_Code(void);#endif

application2.c

#include "application2.h"/*** @brief  App2应用程序* @param  None* @retval None*/
void App2_Code(void)
{//设置中断向量偏移表SCB->VTOR = FLASH_BASE | APP2_VECT_ADDR_OFFSET;//使能全局中断--不使能会出现异常__enable_irq();//APP2中的业务代码程序printf("--------- Welcome to Application 2 --------\r\n");LCD_Init();LCD_SetBackColor(Black);LCD_SetTextColor(White);LCD_Clear(Black);HAL_Delay(200);LCD_DisplayStringLine(Line4, (unsigned char *)"    Application 2    ");    
}

         主函数中对App2程序进行调用

        修改App2程序烧录地址及内存空间大小

六、程序运行效果

开发板实物演示图,按下KEY1按键,启动APP1;按下KEY2按键,启动APP2。

        

上位机串口输出数据演示图

七、工程文件Demo

        本文关于BootLoader讲解演示的3个工程文件可查阅下面的链接访问,文件已上传至CSDN平台的文件资源仓库。

【免费】嵌入式MCUBootLoader开发配置工程Demo资源-CSDN文库

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/619357.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

项目5-博客系统5+程序部署(Linux基本使用)

1.Linux的基本使用 1.1 Linux 是什么 Linux 是⼀个操作系统. 和 Windows 是 "并列" 的关系. 1.2 Unix & Linux 发展历程图 1.1969−1970 年, ⻉尔实验室的 Dennis Ritchie (左) 和 Ken Tompson (右) 开发了 Unix 操作系统. 2. Unix ⽕了之后, 衍⽣出很多的分⽀…

【C++进阶】RAII思想&智能指针

智能指针 一,为什么要用智能指针(内存泄漏问题)内存泄漏 二,智能指针的原理2.1 RAII思想2.2 C智能指针发展历史 三,更靠谱的shared_ptr3.1 引用计数3.2 循环引用3.3 定制删除器 四,总结 上一节我们在讲抛异…

嵌入式单片机 TTL电平、232电平、485电平的区别和联系

一、简介 TTL、232和485是常见的串口通信标准,它们在电平和通信方式上有所不同, ①一般情况下TTL电平应用于单片机外设,属于MCU/CPU等片外外设; ②232/485电平应用于产品整体对外的接口,一般是片外TTL串口转232/485…

MYSQL执行过程和顺序详解

一、前言 1.1、说明 就MySQL在执行过程、sql执行顺序,以及一些相关关键字的注意点方面的学习分享内容。 在参考文章的基础上,会增加自己的理解、看法,希望本文章能够在您的学习中提供帮助。 如有错误的地方,欢迎指出纠错&…

使用spring-ai快速对接ChatGpt

什么是spring-ai Spring AI 是一个与 Spring 生态系统紧密集成的项目,旨在简化在基于 Spring 的应用程序中使用人工智能(AI)技术的过程。 简化集成:Spring AI 为开发者提供了方便的工具和接口,使得在 Spring 应用中集…

网络篇09 | 运输层 udp

网络篇09 | 运输层 udp 01 简介UDP 是面向报文的 02 报文协议 01 简介 UDP 只在 IP 的数据报服务之上增加了一些功能:复用和分用、差错检测 UDP 的主要特点:无连接。发送数据之前不需要建立连接。 使用尽最大努力交付。即不保证可靠交付。 面向报文。…

【c 语言】函数前面的返回类型

🎈个人主页:豌豆射手^ 🎉欢迎 👍点赞✍评论⭐收藏 🤗收录专栏:C语言 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步&…

【数据结构(六)】队列

❣博主主页: 33的博客❣ ▶️文章专栏分类:数据结构◀️ 🚚我的代码仓库: 33的代码仓库🚚 🫵🫵🫵关注我带你学更多数据结构知识 目录 1.前言2.概念3.队列的使用4.循环队列5.双端队列6.经典习题6.1队列实现栈6.2栈实现队…

Windows Edge 兼容性问题修复:提升用户体验的关键步骤

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

【设计模式】聊聊观察者设计模式原理及应用

原理 观察者模式属于行为模式,行为模式主要解决类和对象之间交互问题。 含义:在对象之间定义一个一对多的依赖,当一个对象状态改变时,所有依赖的对象会自动通知。 被依赖的对象被观察者(Observable) ,依赖的对象观察…

MCU最小系统的电源模块设计和复位模块的设计

最小操作系统就是一个电路,这个电路里面必须要的东西(如人需要喝水吃饭温度等情况,才能或者) 现在我们要解决这三个问题 这里V开头的,都是电源管脚 这里解释一下: 这里要注意哪些是电路电压,哪…

API接口京东开放平台item_get-获得京东商品详情API接口根据商品ID查询商品标题价格描述等详情数据

京东商品详情API接口可以提供以下方面的信息: 商品基础信息:包括商品的标题、价格、描述、图片等基本信息,这是构建电商平台的基础数据。商品分类信息:帮助用户更好地了解商品所属的类别,便于商品筛选和查找。商品销售…