PCL中常用的高级采样方法

0. 简介

我们在使用PCL时候,常常不满足于常用的降采样方法,这个时候我们就想要借鉴一些比较经典的高级采样方法。这一讲我们将对常用的高级采样方法进行汇总,并进行整理,来方便读者完成使用

1. 基础下采样

1.1 点云随机下采样

点云下采样是对点云以一定的采样规则重新进行采样,目的是在保证点云整体几何特征不变的情况下,降低点云的密度,进而可以降低相关处理的数据量和算法复杂度。随机下采样顾名思义,随机下采样就似乎在原始点云中随机采样一定点数的点。这种方法最终得到的点云数量也是固定的。

 pcl::PointCloud<PointT>::Ptr cloud_sub(new pcl::PointCloud<PointT>);    //随机下采样点云pcl::RandomSample<PointT> rs;    //创建滤波器对象rs.setInputCloud(cloud);                //设置待滤波点云rs.setSample(20000);                    //设置下采样点云的点数//rs.setSeed(1); //设置随机函数种子点rs.filter(*cloud_sub);                    //执行下采样滤波,保存滤波结果于cloud_sub

 

 

1.2 体素下采样

体素下采样的原理如图1所示,首先将点云空间进行网格化,也称体素化,即图1(b),网格化后的每一个格子称为体素,在这些划分为一个个极小的格子中包含一些点,然后对这些点取平均或加权平均得到一个点,以此来替代原来网格中所有的点,即图1(c)中蓝色的点。显然,网格选取越大则采样之后的点云越少,处理速度变快,但会对原先点云过度模糊,网格选取越小,则作用相反。

 

 pcl::VoxelGrid<pcl::PointXYZ> sor;    //创建体素网格采样处理对象sor.setInputCloud(cloud);             //设置输入点云sor.setLeafSize(0.01f, 0.01f, 0.01f); //设置体素大小,单位:msor.filter(*cloud_filtered);          //进行下采样

1.3 均匀采样

均匀采样的原理类似于体素化网格采样方法,同样是将点云空间进行划分,不过是以半径=r的球体,在当前球体所有点中选择距离球体中心最近的点替代所有点,注意,此时点的位置是不发生移动的。球体半径选取越大则采样之后的点云越少,处理速度变快,但会对原先点云过度模糊,网格选取越小,则作用相反。

pcl::UniformSampling<pcl::PointXYZ> form;   // 创建均匀采样对象
form.setInputCloud(cloud);                  //设置输入点云
form.setRadiusSearch(0.02f);                //设置半径大小,单位:m
form.filter(*after_cloud);                  //执行滤波处理

1.4 增采样

增采样的特点是可极大的增加点云数据,但由于内插点的不确定性会导致最后输出的结果不一定准确。

//创建增采样对象
pcl::MovingLeastSquares<pcl::PointXYZ,pcl::PointXYZ> filter;    
filter.setInputCloud(cloud);                     //设置输入点云
pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree;  //定义搜索方法
filter.setSearchMethod(kdtree);                  //设置搜索方法
filter.setSearchRadius(0.03);    //设置搜索邻域的半径为3cm 
//Upsampling 采样的方法还有 DISTINCT_CLOUD, RANDOM_UNIFORM_DENSITY
filter.setUpsamplingMethod(pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointXYZ>::SAMPLE_LOCAL_PLANE);     //对点云进行上采样
filter.setUpsamplingRadius(0.03);    //设置采样半径大小,3cm
filter.setUpsamplingStepSize(0.02);  //设置采样步长大小,2cm
filter.process(*after_cloud);      //执行采样操作

1.5 滑动最小二乘法采样

滑动最小二乘法采样的原理是将点云进行了滑动最小二乘法的映射,使得输出的点云更加平滑。

pcl::PointCloud<pcl::PointNormal>::Ptr smoothedCloud(new pcl::PointCloud<pcl::PointNormal>);   //定义法线
pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> filter;
pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree;  //定义搜索方法
filter.setInputCloud(cloud);    //设置输入点云
filter.setUpsamplingMethod();  //增加密度较小区域的密度对于holes的填补却无能为力,具体方法要结合参数使用
filter.setSearchRadius(10);// 用于拟合的K近邻半径。在这个半径里进行表面映射和曲面拟合。半径越小拟合后曲面的失真度越小,反之有可能出现过拟合的现象。
filter.setPolynomialFit(true);  //对于法线的估计是有多项式还是仅仅依靠切线。true为加多项式;false不加,速度较快
filter.setPolynomialFit(3);      // 拟合曲线的阶数
filter.setComputeNormals(true);  // 是否存储点云的法向量,true 为存储,false 不存储
filter.setSearchMethod(kdtree); //设置搜索方法
filter.process(*smoothedCloud); //处理点云并输出

2. 最远点采样(Farthest Point Sampling)

这个PCL代码目前已经集成到https://github.com/farthest_point_sampling.hpp。这里我们来单独看一下调用代码,这里可以看到PCL中支持直接调用farthest_sampling这个函数可以实现最远点采样。最远点采样(Farthest Point Sampling)是一种非常常用的采样算法,由于能够保证对样本的均匀采样,被广泛使用,像3D点云深度学习框架中的PointNet++对样本点进行FPS采样再聚类作为感受野,3D目标检测网络VoteNet对投票得到的散乱点进行FPS采样再进行聚类,6D位姿估计算法PVN3D中用于选择物体的8个特征点进行投票并计算位姿。FPS算法原理:

  1. 输入点云有N个点,从点云中选取一个点P0作为起始点,得到采样点集合S={P0};
  2. 计算所有点到P0的距离,构成N维数组L,从中选择最大值对应的点作为P1,更新采样点集合S={P0,P1};
  3. 计算所有点到P1的距离,对于每一个点Pi,其距离P1的距离如果小于L[i],则更新L[i] = d(Pi, P1),因此,数组L中存储的一直是每一个点到采样点集合S的最近距离;
  4. 选取L中最大值对应的点作为P2,更新采样点集合S={P0,P1,P2};
  5. 重复2-4步,一直采样到N’个目标采样点为止。

点击PCL中常用的高级采样方法 - 古月居可查看全文

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/620114.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UE5学习日记——制作多语言版本游戏,同时初步学习UI制作、多语言化、控制器配置、独立进程测试、打包配置和快速批量翻译等

所有的文本类&#xff0c;无论变量还是控件等都能实现本地化&#xff0c;以此实现不同语言版本。 在这里先将重点注意标注一下&#xff1a; 所有文本类的变量、控件等都可以多语言&#xff1b;本地化控制板中收集、编译时&#xff0c;别忘了编译这一步&#xff1b;支持批量复制…

(五)C++自制植物大战僵尸游戏LoadingScene的实现讲解

植物大战僵尸游戏开发教程专栏地址http://t.csdnimg.cn/xjvbb 一、类介绍 游戏启动后就会立即切换到游戏加载场景中。只有游戏资源文件加载完成后&#xff0c;才能进入游戏。Loadingscene类继承Cocos2d-x中的Scene父类&#xff0c;表明Loadingscene是一个场景类。切换到Loadi…

Linux使用Docker部署Firefox火狐浏览器并实现无公网IP远程访问

文章目录 1. 部署Firefox2. 本地访问Firefox3. Linux安装Cpolar4. 配置Firefox公网地址5. 远程访问Firefox6. 固定Firefox公网地址7. 固定地址访问Firefox Firefox是一款免费开源的网页浏览器&#xff0c;由Mozilla基金会开发和维护。它是第一个成功挑战微软Internet Explorer浏…

【算法】数组元素循环右移k位,并要求只用一个元素大小的附加存储,元素移动或交换次数为O(n)

两种写法思路&#xff1a; 思路一&#xff1a;三次倒置 前言&#xff1a;C/C函数 reverse 是 左闭右开区间的&#xff0c;作用是将指定范围数组元素全部倒置&#xff0c;数组从 0 开始&#xff0c;这里主要讲解思路&#xff0c;就直接用 函数 reverse 简化过程 这个方法 实现 …

【opencv】示例-ffilldemo 使用floodFill()函数进行区域泛洪填充

image mask mask #include "opencv2/imgproc.hpp" // 包含OpenCV图像处理头文件 #include "opencv2/imgcodecs.hpp" // 包含OpenCV图像编码头文件 #include "opencv2/videoio.hpp" // 包含OpenCV视频IO头文件 #include "opencv2/highgui.hp…

MO-MFEA--多目标多任务优化

MO-MFEA–多目标多任务优化 title&#xff1a; Multiobjective Multifactorial Optimization in Evolutionary Multitasking author&#xff1a; Abhishek Gupta, Yew-Soon Ong, Liang Feng, and Kay Chen Tan. journal&#xff1a; IEEE TRANSACTIONS ON CYBERNETICS (TCYB…

C ++ 和 C语言的优缺点分别是什么?

C语言&#xff0c;它简直就是编程世界的一块磐石。简洁、直接&#xff0c;让人一眼就能明白它想干嘛。它的运行速度快&#xff0c;接近硬件操作&#xff0c;特别适合那些需要直接与硬件打交道的场景。但就是因为这种接近硬件的特性&#xff0c;C语言在抽象层次上就显得有点捉襟…

项目设计方案:市交通视频监控平台项目设计方案(五)-完稿

目录 1 前言 1.1 目的 1.2 适用范围 1.3 术语表 2 现状分析 2.1 业务现状 2.2 组织机构现状 2.3 存在的问题 2.4 项目成果预期 3 系统建设原则 4 项目需求 4.1 项目需求 4.1.1 业务需求主要分为三部分&#xff1a; 4.1.2 技术需求主要分为四部分&#xff1a; 4.2…

华为防火墙配置双机热备

一、组网需求 公司A基于确保内部网络安全性的考虑&#xff0c;在内外网络之间部署了防火墙。由于防火墙设备是所有信息流都必须通过的单一节点&#xff0c;故一旦防火墙设备出现故障所有信息流都会中断。为了增强网络的可靠性&#xff0c;保证当防火墙设备出现故障时不中断网络…

怎样关闭谷歌浏览器自动更新,亲测ok

步骤一 在服务中禁用Google更新 步骤二 Chrome更新是利用Update文件夹里的升级程序来升级的&#xff0c;需要要删除里面的文件&#xff0c;再让Chrome没法在Update文件夹里继续自动生成更新程序。所以还要清空Update文件夹并设置权限&#xff0c;让Chrome没有权限修改这个文件…

linux 自定义命令/别名

参考资料 Linux(Ubuntu)自定义命令的使用Linux/Ubuntu系统自定义Shell命令Ubuntu/Linux 操作系统 自定义命令 目录 一. 为路径取别名二. 修改.profile文件2.1 .profile简介2.2 需求2.3 修改.profile文件 三. 创建软链接 一. 为路径取别名 ⏹需求&#xff1a;有一个work文件夹…