【TensorFlow】P0 Windows GPU 安装 TensorFlow、CUDA Toolkit、cuDNN

Windows 安装 TensorFlow、CUDA Toolkit、cuDNN

  • 整体流程概述
    • TensorFlow 与 CUDA Toolkit
      • TensorFlow 是一个基于数据流图的深度学习框架
      • CUDA 充分利用 NIVIDIA GPU 的计算能力
      • CUDA Toolkit
    • cuDNN
  • 安装详细流程
    • 整理流程一:安装 CUDA Toolkit
      • 步骤一:获取CUDA版本信息
      • 步骤二:下载安装 CUDA Toolkit
      • 步骤三:按照默认步骤安装
      • 步骤四:检查CUDA安装成功
    • 整体流程二:安装cuDNN
      • 步骤一:下载 cuDNN
      • 步骤二:解压缩下载的 zip,并将其中的文件复制到 CUDA Toolkit 的相应目录
      • 步骤三:配置环境变量
    • 整体流程三:安装 TensorFlow-gpu
      • 步骤一:Anaconda中创建新的环境
      • 步骤二:查看下载 tensorflow-gpu 的版本号
      • 步骤三:检查整体流程安装成功
      • 步骤四:检查 cuDNN 安装成功可用


整体流程概述

TensorFlow 与 CUDA Toolkit

TensorFlow 是一个基于数据流图的深度学习框架

  • TensorFlow是一个基于数据流图的深度学习框架,它使用张量(Tensor)作为数据的基本单位,在GPU上进行张量运算可以极大地提高深度学习模型的训练和推理速度。而CUDA则提供了在GPU上执行高性能并行计算所需的API和运行时环境,能够实现深度学习任务的加速。

CUDA 充分利用 NIVIDIA GPU 的计算能力

  • 安装 TensorFlow 之前需要首先安装 CUDA,准确的说是 CUDA Toolkit。是因为 TensorFlow 使用 CUDA 作为其后端计算引擎。CUDA 是由 NVIDIA 提供的并行计算平台和编程模型,可以充分利用 NVIDIA GPU 的计算能力,实现高性能的并行计算。

CUDA Toolkit

  • 即 TensorFlow 默认会安装与系统和 GPU 兼容的版本,这需要依赖 CUDA Toolkit。CUDA Toolkit 包含 GPU 驱动程序、CUDA Runtime 库和相关工具,使 TensorFlow 能够与 NVIDIA GPU 进行交互并利用其计算能力。

cuDNN

  • 在安装 TensorFlow 之前需要安装 cuDNN(CUDA Deep Neural Network library),是因为 TensorFlow 使用 cuDNN 来加速深度神经网络的计算。cuDNN 是由 NVIDIA 开发的用于深度学习的 GPU 加速库,它针对深度神经网络的计算任务进行了高度优化,可以显著加快训练和推理过程。

  • TensorFlow 通过调用 cuDNN 的 API 来利用 GPU 上的硬件加速功能,特别是在卷积操作等深度学习任务中,cuDNN 能够提供很大的性能提升。在没有 cuDNN 的情况下,TensorFlow 会使用 CPU 来执行这些计算任务,但是由于 CPU 的计算速度相对较慢,处理大规模的深度学习模型时可能会非常耗时。


安装详细流程

在这里插入图片描述

整理流程一:安装 CUDA Toolkit

步骤一:获取CUDA版本信息

桌面 > 右键 > NVIDIA控制面板 > 查看系统信息 > 点击组件 > 查看 NVCUDA64.DLL 的 CUDA版本 > 成功获取CUDA版本信息;

在这里插入图片描述


步骤二:下载安装 CUDA Toolkit

访问 CUDA Toolkit Archive https://developer.nvidia.com/cuda-toolkit-archive 下载对应版本的 CUDA Toolkit,根据步骤一中的 CUDA 版本信息(例如我的CUDA版本为12.0.134),选择下载 Toolkit 版本:

在这里插入图片描述

并开始下载,耐心等待10分钟;

在这里插入图片描述


步骤三:按照默认步骤安装

按照向导进行安装即可;

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
请添加图片描述


步骤四:检查CUDA安装成功

安装完成后,你可以在命令提示符或 PowerShell 中输入以下命令来验证 CUDA 是否成功安装:

nvcc -V

或者同:

nvcc --version

在这里插入图片描述

如果安装成功,将会输出 CUDA 的版本号。下面我们进行安装 cuDNN;


整体流程二:安装cuDNN

步骤一:下载 cuDNN

  • 访问 cuDNN 下载网址:https://developer.nvidia.com/rdp/cudnn-download;

  • 出现下图界面说明你需要首先登陆你的 NIVIDIA 账户;

在这里插入图片描述

  • 出现如下界面,需要根据本机的 CUDA 版本选择安装,如何获取本机的 CUDA 版本?如下:

获取CUDA版本信息:
桌面 > 右键 > NVIDIA控制面板 > 查看系统信息 > 点击组件 > 查看 NVCUDA64.DLL 的 CUDA版本 > 成功获取CUDA版本信息,即 12.x

在这里插入图片描述

  • 根据上述获得的 CUDA 版本信息,选择下载 12.x 版本的cuDNN;

在这里插入图片描述

步骤二:解压缩下载的 zip,并将其中的文件复制到 CUDA Toolkit 的相应目录

  • 解压缩后应该包含三个文件夹和一个文件:
    binincludelibLICENSE

在这里插入图片描述

  • 将三个文件夹中的文件分别复制到各自的 CUDA Toolkit 目录中
    • 首先打开 bin 文件夹:
      在这里插入图片描述
      复制全部文件,粘贴到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\bin 文件夹中;

    • 然后打开 include 文件夹:
      在这里插入图片描述
      同样复制全部文件,粘贴到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\include 文件夹中;

    • 最后打开 lib\x64 文件夹:
      在这里插入图片描述
      将全部文件粘贴到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\lib\x64 文件夹中;

步骤三:配置环境变量

  • 确保将 CUDA 和 cuDNN 的安装路径添加到系统的环境变量中,这样 TensorFlow 才能正确地找到这些库和头文件;
  • cuDNN 中不会默认配置环境变量,需要读者手动配置环境变量:
  • 首先打开 环境变量 path 栏目:

在这里插入图片描述

  • 将解压缩后的 cuDNN 文件夹的 \bin 绝对地址复制粘贴:
    C:\Users\xhong\Downloads\cudnn-windows-x86_64-8.9.3.28_cuda12-archive\cudnn-windows-x86_64-8.9.3.28_cuda12-archive\bin

在这里插入图片描述

完成!

cuDNN的完成检查需要等待下一步 tensorflow-gpu 安装完成后;


整体流程三:安装 TensorFlow-gpu

  • 在安装完 cuDNN 后,再安装 TensorFlow 时,TensorFlow 将能够识别到你的 cuDNN 并自动与之集成,从而在 GPU 上运行深度学习任务时获得显著的加速效果。总之,安装cuDNN是为了充分发挥GPU的计算能力,提高TensorFlow的性能和效率,特别是在处理复杂的深度学习模型时,cuDNN的优化可以为你节省大量时间。

步骤一:Anaconda中创建新的环境

  • 建议在 Anaconda Prompt 中创建一个新的环境,因为我的 base 环境已经安装好了 gpu 版本的 torch,而且如果都放在一个环境中更新环境会比较耗时;

  • 创建环境 tensorflow

    conda create -n tensorflow pip python=3.8
    
  • 激活环境 tensorflow

    activate tensorflow
    

    在这里插入图片描述

步骤二:查看下载 tensorflow-gpu 的版本号

https://www.tensorflow.org/install/source_windows?hl=zh-cn
网址最下方有一个表格,列有 GPU 的 CUDA、cuDNN 对照的安装的 tensorflow-gpu 版本号

在这里插入图片描述

  • 很明显,根据我的 cuDNN(8.9.3.28) 与 CUDA(12.0.134) 版本的短板效应,我稳妥选择 tensorflow_gpu-2.4.0 版本,建议读者到这里也这么选择,稳定能用就是了;

  • 输入命令:

    pip install --ignore-installed --upgrade tensorflow_gpu==2.4.0
    # 注意将2.4.0替换为你的版本号
    

等待安装完成!

步骤三:检查整体流程安装成功

  • 打开 Pycharm,记得将环境从 base 切换到刚刚创建配置的 tensorflow:

    import tensorflow as tf# 检查是否有可用的 GPU 设备
    if tf.config.list_physical_devices('GPU'):print('GPU可用')
    else:print("GPU不可用")
    

    在这里插入图片描述

  • 出现上图所示 True,即完成安装步骤,若出现 curand64_10.dll is not found 等标识,即说明下载安装相关 CUDA Toolkit 版本出现意外错误,解决办法为通过将文件中已含有的 curand64_11.dll 文件重命名可解决问题,如下图所示:

    在这里插入图片描述

  • bin文件目录地址为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.0\bin

  • 安装 CUDA 后,再安装 TensorFlow 时,TensorFlow 将会自动与 CUDA 进行集成,并在 GPU 上利用 CUDA 的功能来加速深度学习任务。这样,TensorFlow 能够更高效地执行张量计算,从而显著提高模型训练和推理的速度。

步骤四:检查 cuDNN 安装成功可用

import tensorflow as tf# 检查TensorFlow-gpu是否可用
print("TensorFlow-gpu available:", tf.test.is_gpu_available())# 检查cuDNN是否可用
print("cuDNN version:", tf.config.list_physical_devices('GPU'))

在这里插入图片描述
完结撒花!!!!~~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/62095.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

opencv基础53-图像轮廓06-判断像素点与轮廓的关系(轮廓内,轮廓上,轮廓外)cv2.pointPolygonTest()

点到轮廓的距离 在 OpenCV 中,函数 cv2.pointPolygonTest()被用来计算点到多边形(轮廓)的最短距离(也 就是垂线距离),这个计算过程又称点和多边形的关系测试。该函数的语法格式为: retval cv2…

多路复用select实现

select函数 int select(int nfds, fd_set *readfds,fd_set *writefds,fd_set *exceptfds, struct timeval *timeout);nfds:是三个集合中编号最高的文件描述符,加上1readfds/writefds/exceptfds: 可读集合/可写集合/异常集合timeout NULL:永久阻塞0&…

flink kafka消费者如何处理kafka主题的rebalance

背景: 我们日常使用kafka客户端消费kafka主题的消息时,当消费者退出/加入消费者组,kafka主题分区数有变等事件发生时,都会导致rebalance的发生,此时一般情况下,如果我们不自己处理offset,我们不…

Android Studio实现滑动图片验证码

源代码链接 效果: MainActivity package com.example.slidingpattern;import androidx.appcompat.app.AppCompatActivity;import android.annotation.SuppressLint; import android.graphics.BitmapFactory; import android.os.Bundle; import android.view.Moti…

photoshop生成器引入到electron项目(electron与photoshop建立通信)

Photoshop引入了nodejs,在启动的时候,通过pipe调起nodejs运行时核心generator-builtin,通过KLVR机制与ps进行通信和交互,同时会加载用户编写的扩展。 这里记录一下引入时的踩坑过程 generator-core就是它的源码,elect…

栈和队列(二) 队列操作详解及栈与队列的相互实现

文章目录 四、队列1、什么是队列2、队列的基本操作Queue.hQueue.c初始化队列队尾入队列队头出队列获取队列头部元素获取队列队尾元素获取队列中有效元素个数检测队列是否为空,如果为空返回非零结果,如果非空返回0销毁队列 五、设计循环队列六、栈与队列的…

整数中1出现的次数(从1到n整数中1出现的次数)

解题思路1: 设定整数点(如1、10、100等等)作为位置点i(对应n的各位、十位、百位等等),分别对每个数位上有多少包含1的点进行分析。 第一步:对n进行分割,分为两部分:高位…

标准化归一化 batch norm, layer norm, group norm, instance norm

Layer Normalization - EXPLAINED (in Transformer Neural Networks) Layer Normalization - EXPLAINED (in Transformer Neural Networks) 0~4min:什么是multi-head attention 5~7min:layer norm图示 7~9min:公式举例layer norm 9:54-end:layer norm的代码示例 group n…

Redis安装配置远程连接

1. yum 安装 redis: 直接使用命令,将 redis 安装到 linux 服务器中: yum -y install redis 2. 启动 redis: 在 xshell 里,可以使用下面命令,以后台方式启动 redis: [rootVM-8-17-centos /]…

【李宏毅机器学习·学习笔记】Tips for Training: Batch and Momentum

本节课主要介绍了Batch和Momentum这两个在训练神经网络时用到的小技巧。合理使用batch,可加速模型训练的时间,并使模型在训练集或测试集上有更好的表现。而合理使用momentum,则可有效对抗critical point。 课程视频: Youtube&…

# X11、Xlib、XFree86、Xorg、GTK、Qt、Gnome和KDE之间的关系

X11、Xlib、XFree86、Xorg、GTK、Qt、Gnome和KDE之间的关系 很多人对于他们是啥是傻傻分不清的,我做了个表格供大家参考。 摘抄: X11是X Window System Protocol, Version 11(RFC1013),是X server和X client之间的通…

Observability:识别生成式 AI 搜索体验中的慢速查询

作者:Philipp Kahr Elasticsearch Service 用户的重要注意事项:目前,本文中描述的 Kibana 设置更改仅限于 Cloud 控制台,如果没有我们支持团队的手动干预,则无法进行配置。 我们的工程团队正在努力消除对这些设置的限制…