【LeetCode: 785. 判断二分图 + bfs】

在这里插入图片描述

🚀 算法题 🚀

🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀
🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨
🌲 作者简介:硕风和炜,CSDN-Java领域优质创作者🏆,保研|国家奖学金|高中学习JAVA|大学完善JAVA开发技术栈|面试刷题|面经八股文|经验分享|好用的网站工具分享💎💎💎
🌲 恭喜你发现一枚宝藏博主,赶快收入囊中吧🌻
🌲 人生如棋,我愿为卒,行动虽慢,可谁曾见我后退一步?🎯🎯

🚀 算法题 🚀

在这里插入图片描述

在这里插入图片描述

🍔 目录

    • 🚩 题目链接
    • ⛲ 题目描述
    • 🌟 求解思路&实现代码&运行结果
      • ⚡ bfs
        • 🥦 求解思路
        • 🥦 实现代码
        • 🥦 运行结果
    • 💬 共勉

🚩 题目链接

  • 785. 判断二分图

⛲ 题目描述

存在一个 无向图 ,图中有 n 个节点。其中每个节点都有一个介于 0 到 n - 1 之间的唯一编号。给你一个二维数组 graph ,其中 graph[u] 是一个节点数组,由节点 u 的邻接节点组成。形式上,对于 graph[u] 中的每个 v ,都存在一条位于节点 u 和节点 v 之间的无向边。该无向图同时具有以下属性:
不存在自环(graph[u] 不包含 u)。
不存在平行边(graph[u] 不包含重复值)。
如果 v 在 graph[u] 内,那么 u 也应该在 graph[v] 内(该图是无向图)
这个图可能不是连通图,也就是说两个节点 u 和 v 之间可能不存在一条连通彼此的路径。
二分图 定义:如果能将一个图的节点集合分割成两个独立的子集 A 和 B ,并使图中的每一条边的两个节点一个来自 A 集合,一个来自 B 集合,就将这个图称为 二分图 。

如果图是二分图,返回 true ;否则,返回 false 。

示例 1:
在这里插入图片描述

输入:graph = [[1,2,3],[0,2],[0,1,3],[0,2]]
输出:false
解释:不能将节点分割成两个独立的子集,以使每条边都连通一个子集中的一个节点与另一个子集中的一个节点。
示例 2:

在这里插入图片描述

输入:graph = [[1,3],[0,2],[1,3],[0,2]]
输出:true
解释:可以将节点分成两组: {0, 2} 和 {1, 3} 。

提示:

graph.length == n
1 <= n <= 100
0 <= graph[u].length < n
0 <= graph[u][i] <= n - 1
graph[u] 不会包含 u
graph[u] 的所有值 互不相同
如果 graph[u] 包含 v,那么 graph[v] 也会包含 u

🌟 求解思路&实现代码&运行结果


⚡ bfs

🥦 求解思路
  1. 遍历所有节点,遍历的过程中用两种不同的颜色对顶点进行染色,相邻顶点染成相反的颜色。这个过程中如果发现相邻的顶点被染成了相同的颜色,说明它不是二分图;反之,如果所有的连通域都染色成功,说明它是二分图。
  2. 有了基本的思路,接下来我们就来通过代码来实现一下。
🥦 实现代码
class Solution {public boolean isBipartite(int[][] graph) {int[] visited = new int[graph.length];Queue<Integer> queue = new LinkedList<>();for (int i = 0; i < graph.length; i++) {if (visited[i] != 0) {continue;}queue.offer(i);visited[i] = 1;while (!queue.isEmpty()) {int v = queue.poll();for (int w: graph[v]) {if (visited[w] == visited[v]) {return false;}if (visited[w] == 0) {visited[w] = -visited[v];queue.offer(w);}}          }}return true;}
}
🥦 运行结果

在这里插入图片描述


💬 共勉

最后,我想和大家分享一句一直激励我的座右铭,希望可以与大家共勉!

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/625301.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BLE架构图

PHY层(Physical layer 物理层) PHY层用来指定BLE所用的无线频段(2.4G)&#xff0c;调制解调方式和方法、跳频等。PHY层的性能直接决定整个BLE芯片的功耗、灵敏度以及selectivity等射频指标。 LL层(Link Layer 链路层) 链路层主要是对RF射频控制。链路层定义了协议栈中最为基础的…

动态规划Dynamic programming详解-背包问题【python】

作者介绍&#xff1a;10年大厂数据\经营分析经验&#xff0c;现任大厂数据部门负责人。 会一些的技术&#xff1a;数据分析、算法、SQL、大数据相关、python 欢迎加入社区&#xff1a;码上找工作 作者专栏每日更新&#xff1a;LeetCode解锁1000题: 打怪升级之旅python数据分析可…

为什么科拓停车选择OceanBase来构建智慧停车SaaS应用

本文来自OceanBase的客户——拓客停车的实践分享 科拓停车简介与业务背景 作为智慧停车行业的佼佼者&#xff0c;科拓停车致力于提供全方位的智慧停车解决方案。服务涵盖车场运营管理、互联网智慧停车平台以及停车场增值服务等。通过不断研发创新&#xff0c;打造出了多样化的…

回归损失函数

目录 1 MAE 2 MSE 3 MAPE 4 Quantile Loss分位数损失 回归损失函数也可以做为评价指标使用&#xff0c;但是有没有想过数据分布与损失函数之间的关系呢&#xff01; 使用特定损失函数的前提是我们对标签的分布进行了某种假设&#xff0c;在这种假设的前提下通过极大似然法推…

Eclipse中 Maven安装与配置步骤,2024年最新面试总结

先自我介绍一下&#xff0c;小编浙江大学毕业&#xff0c;去过华为、字节跳动等大厂&#xff0c;目前阿里P7 深知大多数程序员&#xff0c;想要提升技能&#xff0c;往往是自己摸索成长&#xff0c;但自己不成体系的自学效果低效又漫长&#xff0c;而且极易碰到天花板技术停滞…

vscode如何方便地添加todo和管理todo

如果想在vscode中更加方便的添加和管理TODO标签&#xff0c;比如添加高亮提醒和查看哪里有TODO标签等&#xff0c;就可以通过安装插件快速实现。 安装插件 VSCode关于TODO使用人数最多的插件是TODO Height和Todo Tree 按住 CtrlShiftX按键进入应用扩展商店&#xff0c;输入to…

基于stm32_h5的freertos编程示例

目录 基于stm32_h5的freertos编程示例实验目的添加FreeRTOS配置FreeRTOS测试工程本文中使用的测试工程 基于stm32_h5的freertos编程示例 本文目标&#xff1a;基于stm32_h5的freertos编程示例 按照本文的描述&#xff0c;应该可以在对应的硬件上通实验并举一反三。 先决条件…

十大远程控制软件排名

远程控制软件在现代计算环境中扮演着至关重要的角色&#xff0c;它们使得用户能够轻松地访问和管理远程计算机或设备。随着技术的不断进步&#xff0c;市场上涌现出许多优秀的远程控制工具。以下是对当前市场上十大远程控制软件的简要排名和介绍&#xff0c;以帮助您选择最适合…

上位机图像处理和嵌入式模块部署(树莓派4b实现xmlrpc通信)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面&#xff0c;我们也用纯API实现过上位机和开发板之间的通信。当时使用的方法&#xff0c;就是用windows自带的网络sdk和linux自带的api函数来完…

微软提供用于测试框架的SDK

微软发布了 MSTest SDK。 MSTest SDK基于 MSBuild Project SDK 系统构建并基于MSTest 运行程序&#xff0c;旨在为开发人员提供更好的使用 Microsoft 单元测试框架 MSTest 进行测试的体验。 微软表示&#xff0c; 4 月 11 日发布的MSTest SDK通过合理的默认设置和灵活的选项使…

Git回滚操作,工作区和暂存区恢复修改删除的文件

在利用git协作过程中&#xff0c;经常需要进行代码的撤销操作&#xff0c;这个行为可能发生在工作区&#xff0c;暂存区或者仓库区&#xff08;或版本库&#xff09;。 我们先讨论在工作区与暂存区发生的撤销行为&#xff0c;这里会有两个命令提供帮助&#xff0c;git restore…

uni-app学习

目录 一、安装HBuilderX 二、创第一个uni-app 三、项目目录和文件作用 四、全局配置文件&#xff08;pages.json&#xff09; 4.1 globalStyle&#xff08;全局样式&#xff09; 导航栏&#xff1a;背景颜色、标题颜色、标题文本 导航栏&#xff1a;开启下拉刷新、下拉背…