【机器学习300问】71、神经网络中前向传播和反向传播是什么?

        我之前写了一篇有关计算图如何帮助人们理解反向传播的文章,那为什么我还要写这篇文章呢?是因为我又学习了一个新的方法来可视化前向传播和反向传播,我想把两种方法总结在一起,方便我自己后续的复习。对了顺便附上往期文章的链接方便回顾:

【机器学习300问】59、计算图是如何帮助人们理解反向传播的?icon-default.png?t=N7T8http://t.csdnimg.cn/QMYZt

一、用计算图来理解

        再用小孩儿做数学题的例子来为大家介绍什么是前向传播(又叫正向传播),什么是反向传播。假设你在教一个小孩儿,计算 (a+b)\times c 。

(1)前向传播

        就像是小孩按照步骤一步步计算题目。比如说他要计算 (a+b) × c,他先算出 a+b 的结果,然后再把这个结果乘以 c 得到最后的答案。

        前向传播是神经网络中从输入层到输出层的计算过程。在神经网络中,输入层接收原始数据,然后通过隐藏层的处理,最终由输出层产生预测结果。每个神经元都会根据前一层神经元的输出和自身的权重进行计算,然后将结果传递给下一层。

(2)损失函数

        相当于你用来判断小孩答案对错的标准,本质是个衡量错误程度的“分数”。如果他的答案离正确答案差很多,那么这个分数就会很高,表示他错的很离谱。反之,若他的损失分数很小,说明他的答案很接近正确答案。

        损失函数是用来衡量神经网络预测结果与实际结果之间差距的指标。损失函数越小,说明神经网络的预测结果越接近实际结果。在训练过程中,我们的目标就是最小化损失函数。

(3)反向传播

        反向传播类似你指导小孩如何改正错误的过程。假设他最后的答案错了,你会告诉他:“你计算的最后一步有问题,你需要知道是因为 c 值没乘对还是前面 a+b 的结果就不对。”于是你从最后一个步骤开始,告诉小孩每一步对他最后答案的影响有多大(也就是计算梯度),这样他才能有针对性地调整自己的计算步骤,以便下次做得更好。

        反向传播是神经网络中根据损失函数的梯度信息调整权重的过程。在前向传播得到预测结果并计算损失函数后,我们需要知道每个权重对损失函数的影响程度,也就是梯度。通过反向传播算法,我们可以从输出层开始,逐层计算每个神经元的梯度,并根据梯度信息更新权重。

二、用神经网络块来理解

        让我们首先来画一个神经网络:

        我先用语言来描述一下这个神经网络,上图是一个四层神经网络,有三个隐藏层。我们用L来表示隐藏层总个数,显然L=4。输入层的索引为0,故三个隐藏层的神经元个数n^{[l]}分别表示为n^{[1]}=n^{[2]}=n^{[3]}=4。而输入层的特征数表示为n^{[0]}=n_x=4。而每层都用a^{[l]}来表示激活函数输出的结果。输入激活函数中权重和偏置表示为:

\left\{\begin{matrix} z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]} \\ a^{[l]}=g^{[l]}(z^{[l]}) \end{matrix}\right.

(1)神经网络块

 

        在第l层你有参数W^{[l]}b^{[l]},正向传播里有输入的激活函数,输入是前一层a^{[l-1]},输出是a^{[l]},我们之前讲过z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]},a^{[l]}=g^{[l]}(z^{[l]}),,那么上图就是可视化展示出如何从输入a^{[l-1]}走到输出a^{[l]}的。之后你就可以把z^{[l]}的值缓存起来,因为缓存的z^{[l]}对以后的正向反向传播的步骤非常有用。

        然后是反向步骤或者说反向传播步骤,同样也是第l层的计算,你需要实现一个函数输入为da^{[l]},输出da^{[l-1]}的函数。一个小细节需要注意,输入在这里其实是da^{[l]}以及所缓存的z^{[l]}值,之前计算好的z^{[l]}值,除了输出的da^{[l-1]}值以外,还需要输出你需要的梯度dW^{[l]}db^{[l]},这是为了实现梯度下降。

(2)前向传播

        在正向传播过程中,“传播”的是信号数据(就是你通过节点式子算出来的值)。 

(3)反向传播

        通过完整的神经网络计算块,可以清晰直观的感受前向传播和反向传播参数和参数的梯度是如何在各层中传递的。 反向传播,“传播”的是误差信号在神经网络中的梯度(梯度就是指导参数该怎么变的变化率)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/625448.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从汇编代码理解数组越界访问漏洞

数组越界访问漏洞是 C/C 语言中常见的缺陷,它发生在程序尝试访问数组元素时未正确验证索引是否在有效范围内。通常情况下,数组的索引从0开始,到数组长度减1结束。如果程序尝试访问小于0或大于等于数组长度的索引位置,就会导致数组…

停车资产数字化运营管理方案内容包括哪些?

随着新兴信息技术的蓬勃发展,如大数据、云服务、机器学习以及数字孪生等,停车行业正经历着前所未有的变革。这些技术的应用不仅推动了智慧停车领域的迅猛扩张,而且已成为全球各地数字化城市构建和城市治理现代化的关键驱动力。在数字化、平台…

代码随想录——双指针(一)

一.移动零 解法一&#xff1a;模拟 func moveZeroes(nums []int) {n:len(nums)l,r:0,1for r<n&&l<n{if nums[r]0{if nums[l]!0{lr}else{r}}else if nums[l]0{nums[l],nums[r]nums[r],nums[l]lr}else{lr}} }二.双指针 func moveZeroes(nums []int) {n:len(num…

Jackson 2.x 系列【28】Spring Boot 集成之 Long 精度损失

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Jackson 版本 2.17.0 本系列Spring Boot 版本 3.2.4 源码地址&#xff1a;https://gitee.com/pearl-organization/study-jaskson-demo 文章目录 1. 问题场景2. 原因分析3. 解决方案4. 案例演示4.…

计算机考研408真的很难吗?

408难&#xff01;科软有人四战没上岸&#xff0c;就是408拖的后腿&#xff01; 这位同学数二144英二81&#xff0c;真的太可惜了&#xff01; 是因为择校的问题吗&#xff1f; 看了他的备战经历后&#xff0c;我们发现&#xff0c;还真不是择校问题&#xff01; 是典型的备…

Jmeter03:直连数据库

1 Jmete组件&#xff1a;直连数据库 1.1 是什么&#xff1f; 让Jmeter直接和数据库交互 1.2 为什么&#xff1f; 之前是通过接口操作数据库&#xff0c;可能出现的问题&#xff1a;比如查询可能有漏查误查的情况&#xff0c;解决方案是人工对不&#xff0c;效率低且有安全隐患…

【笔记】ASP.NET Core 2.2 Web API —— 学习笔记

当年刚接触 ASP.NET Core 2.2 时&#xff0c;留下的学习笔记。现在把它挪到 CSDN&#xff0c;也是对过去学习 ASP.NET Core 痕迹进行记录。 VS 2019 ASP.NET Core 2.2 sqlSugarCore (ORM) 1. 仓储模式 服务 抽象接口 1.1 新建asp.net core 2.2 WebApi项目 nmmking.Core.…

还有同学开题报告没写吗?

引言 作为一名在软件技术领域深耕多年的专业人士&#xff0c;我不仅在软件开发和项目部署方面积累了丰富的实践经验&#xff0c;更以卓越的技术实力获得了&#x1f3c5;30项软件著作权证书的殊荣。这些成就不仅是对我的技术专长的肯定&#xff0c;也是对我的创新精神和专业承诺…

微信小程序全局配置

全局配置文件及常用的配置项 小程序根目录下的 app.json 文件是小程序的全局配置文件。常用的配置项如下&#xff1a; ① pages 记录当前小程序所有页面的存放路径 ② window 全局设置小程序窗口的外观 ③ tabBar 设置小程序底部的 tabBar 效果 ④ style 是否启用新版的组件样…

uniapp--登录和注册页面-- login

目录 1.效果展示 2.源代码展示 测试登录 login.js 测试请求 request.js 测试首页index.js 1.效果展示 2.源代码展示 <template><view><f-navbar title"登录" navbarType"4"></f-navbar><view class"tips"><…

初识--Linux的虚拟地址空间

重新了解地址空间 在学习c/c语言的时候,大家一定见过以下这张图 说的是程序会加载在如图的结构上,实际上,我们真的对他很了解吗,而在Linux进程控制这,就会有一个奇怪的现象 前提提要:简要介绍一下fork函数 进程内核数据结构(PCB)自己的代码以及数据 在Linux中,fork可以从当…

Sy-linux下常用的网络命令linux network commands

linux下的网络命令非常强大&#xff0c;这里根据教材需要&#xff0c;列出来常用的网络命令和场景实例&#xff0c;供参考。 一、命令列表&#xff1a; Command Description ip Manipulating routing to assigning and configuring network parameters traceroute Identi…