Python-OpenCV中的图像处理-傅里叶变换

Python-OpenCV中的图像处理-傅里叶变换

  • 傅里叶变换
    • Numpy中的傅里叶变换
    • Numpy中的傅里叶逆变换
    • OpenCV中的傅里叶变换
    • OpenCV中的傅里叶逆变换
  • DFT的性能优化
  • 不同滤波算子傅里叶变换对比

傅里叶变换

  • 傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。
  • 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率 f 中看到一个峰值。如果我们的信号是由采样产生的离散信号组成,我们会得到类似的频谱图,只不过前面是连续的,现在是离散。你可以把图像想象成沿着两个方向采集的信号。所以对图像同时进行 X 方向和 Y 方向的傅里叶变换,我们就会得到这幅图像的频域表示(频谱图)。
  • 对于一个正弦信号,如果它的幅度变化非常快,我们可以说他是高频信号,如果变化非常慢,我们称之为低频信号。你可以把这种想法应用到图像中,图像那里的幅度变化非常大呢?边界点或者噪声。所以我们说边界和噪声是图像中的高频分量(注意这里的高频是指变化非常快,而非出现的次数多)。如果没有如此大的幅度变化我们称之为低频分量。

Numpy中的傅里叶变换

Numpy 中的 FFT 包可以帮助我们实现快速傅里叶变换。函数 np.fft.fft2() 可以对信号进行频率转换,输出结果是一个复杂的数组。本函数的第一个参数是输入图像,要求是灰度格式。第二个参数是可选的, 决定输出数组的大小。输出数组的大小和输入图像大小一样。如果输出结果比输入图像大,输入图像就需要在进行 FFT 前补0。如果输出结果比输入图像小的话,输入图像就会被切割。
f = np.fft.fft2(img)
现在我们得到了结果,频率为 0 的部分(直流分量)在输出图像的左上角。如果想让它(直流分量)在输出图像的中心,我们还需要将结果沿两个方向平移 N/2 。函数 np.fft.fftshift() 可以帮助我们实现这一步。(这样更容易分析)。进行完频率变换之后,我们就可以构建振幅谱了。
fshift = np.fft.fftshift(f)

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)# 构建振幅图
magnitude_spectrum = 20*np.log(np.abs(fshift))plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image')
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Magnitude Spectrum')
plt.show()

在这里插入图片描述
我们可以看到输出结果的中心部分更白(亮),这说明低频分量更多。

Numpy中的傅里叶逆变换

  • 对图像进行FFT变换之后得到频域图像数据,然后再做IFFT变换又可以得到原始图像。相关函数:np.fft.ifftshift(),np.fft.ifft2()
    fishift = np.fft.ifftshift(fshift)
    img_ifft = np.fft.ifft2(fishift)
  • 我们可以对频域图像数据进行操作以实现一些图像处理效果,如在频域内将低频分量的值设为0,可以实现对图像的高通滤波处理:
    rows, cols = img.shape
    crow, ccol = int(rows/2) , int(cols/2)
    fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)# 1.在Numpy内对图像进行傅里叶变换,得到其频域图像
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
# 这里是构建振幅图,显示图像频谱
magnitude_spectrum = 20*np.log(np.abs(fshift))# 2.IFFT 将频域图像还原成原始图像,这里只是验证FFT的逆运算
fishift = np.fft.ifftshift(fshift)
img_ifft = np.fft.ifft2(fishift)
img_ifft = np.abs(img_ifft) # 取绝对值,否则不能用imshow()来显示图像# 3.在频域内将低频分量的值设为0,实现高通滤波。
rows, cols = img.shape 
crow, ccol = int(rows/2) , int(cols/2) 
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0 # 4.对高通滤波后的图像频域数据进行逆傅里叶变换,得到高通滤波后图像。
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back) # 取绝对值,否则不能用imshow()来显示图像
# 构建高通滤波后的振幅图,显示图像频谱
after_sepctrum = 20*np.log(np.abs(fshift))plt.subplot(231), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(232), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Input Image Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(233), plt.imshow(img_ifft, cmap='gray'), plt.title('Input IFFT'), plt.xticks([]), plt.yticks([])
plt.subplot(234), plt.imshow(after_sepctrum, cmap='gray'), plt.title('After HPF Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(235), plt.imshow(img_back, cmap='gray'), plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.subplot(236), plt.imshow(img_back), plt.title('Result in JET'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

OpenCV中的傅里叶变换

OpenCV 中相应的函数是 cv2.dft() 和 cv2.idft()。和前面输出的结果一样,但是是双通道的。第一个通道是结果的实数部分,第二个通道是结果的虚数部分。输入图像要首先转换成 np.float32 格式。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0], dft_shift[:,:,1]))plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(magnitude_spectrum, cmap='gray'), plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

OpenCV中的傅里叶逆变换

前面的部分我们实现了一个 HPF(高通滤波)高通滤波其实是一种边界检测操作。现在我们来做 LPF(低通滤波)将高频部分去除。其实就是对图像进行模糊操作。首先我们需要构建一个掩模,与低频区域对应的地方设置为 1, 与高频区域对应的地方设置为 0。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
# 1.OpenCV中做DFT
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape
crow, ccol = int(rows/2), int(cols/2)# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1# apply mask and inverse DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0], img_back[:,:,1])plt.subplot(121), plt.imshow(img, cmap='gray'), plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray'), plt.title('Output Image'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

DFT的性能优化

  • 当数组的大小为某些值时 DFT 的性能会更好。当数组的大小是 2 的指数时 DFT 效率最高。当数组的大小是 2, 3, 5 的倍数时效率也会很高。所以如果你想提高代码的运行效率时,你可以修改输入图像的大小(补 0)。对于OpenCV 你必须自己手动补 0。但是 Numpy,你只需要指定 FFT 运算的大小,它会自动补 0。
  • OpenCV 提供了一个函数:cv2.getOptimalDFTSize()来确定最佳大小。它可以同时被 cv2.dft() 和 np.fft.fft2() 使用。
import numpy as np
import cv2img = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
rows,cols = img.shape
print('原始图像大小:',rows, cols)
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print('DFT最佳大小:',nrows, ncols)

原始图像大小: 342 548
DFT最佳大小: 360 576

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('./resource/opencv/image/messi5.jpg', cv2.IMREAD_GRAYSCALE)
rows,cols = img.shape
print('原始图像大小:',rows, cols)
nrows = cv2.getOptimalDFTSize(rows)
ncols = cv2.getOptimalDFTSize(cols)
print('DFT最佳大小:',nrows, ncols)# Numpy数组操作,原图扩大到最佳DFT size
nimg = np.zeros((nrows, ncols))
nimg [:rows, :cols] = img# 
right = ncols - cols
bottom = nrows - rows
# just to avoid line breakup in PDF file
mimg = cv2.copyMakeBorder(img, 0, bottom, 0, right, cv2.BORDER_CONSTANT, value=0)plt.subplot(231), plt.imshow(img, cmap='gray')
plt.subplot(232), plt.imshow(nimg, cmap='gray')
plt.subplot(233), plt.imshow(mimg, cmap='gray')
plt.show()

在这里插入图片描述

不同滤波算子傅里叶变换对比

为什么拉普拉斯算子是高通滤波器?为什么 Sobel 是 HPF?等等。对于第一个问题的答案我们以傅里叶变换的形式给出。我们一起来对不同的算子进行傅里叶变换并分析它们:

import numpy as np
import cv2
from matplotlib import pyplot as plt# simple averaging filter whitout scaling parameter
mean_filter = np.ones((3,3))# creating a guassian filter
x = cv2.getGaussianKernel(5, 10)
# x.T 为矩阵转置
gaussian = x*x.T# different edge detecting filters
# scharr in x-direction
scharr = np.array([[-3, 0, 3],[-10, 0, 10],[-3, 0, 3]])# sobel in x direction
sobel_x = np.array([[-1, 0, 1],[-2, 0, 2],[-1, 0, 1]])# sobel in y direction
sobel_y = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])# laplacian
laplacian = np.array([[0, 1, 0], [1, -4, 1],[0, 1, 0]])filters = [mean_filter, gaussian, laplacian, sobel_x, sobel_y, scharr]
filter_name = ['mean_filter', 'gaussian', 'laplacian', 'sobel_x', 'sobel_y', 'scharr_x']fft_filters = [np.fft.fft2(x) for x in filters]
fft_shift = [np.fft.fftshift(y) for y in fft_filters]
mag_spectrum = [np.log(np.abs(z)+1) for z in fft_shift]for i in range(6):plt.subplot(2,3,i+1), plt.imshow(mag_spectrum[i], cmap='gray')plt.title([filter_name[i]]), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/63300.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TiktTok推“飞轮计划”,推动社交商务生态发展

2023年,TikTok可谓动作频频,为了快速在海外市场中推进社交电商的发展进程,该平台正在采取多项措施,以实现其全球电子商务业务翻两番的目标,即通过TikTok Shop实现年商品销售总额达200亿美元 。 因此,TikTo…

基于Spring Boot的影视点播网站设计与实现(Java+spring boot+MySQL)

获取源码或者论文请私信博主 演示视频: 基于Spring Boot的影视点播网站设计与实现(Javaspring bootMySQL) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:Java springboot…

音视频 vs2017配置FFmpeg

vs2017 ffmpeg4.2.1 一、首先我把FFmpeg整理了一下&#xff0c;放在C盘 二、新建空项目 三、添加main.cpp&#xff0c;将bin文件夹下dll文件拷贝到cpp目录下 #include<stdio.h> #include<iostream>extern "C" { #include "libavcodec/avcodec.h&…

题解:ABC276E - Round Trip

题解&#xff1a;ABC276E - Round Trip 题目 链接&#xff1a;Atcoder。 链接&#xff1a;洛谷。 难度 算法难度&#xff1a;普及。 思维难度&#xff1a;提高。 调码难度&#xff1a;提高。 综合评价&#xff1a;困难。 算法 bfs。 思路 从起点周围四个点中任选两…

【脚踢数据结构】深入理解栈

(꒪ꇴ꒪ )&#xff0c;Hello我是祐言QAQ我的博客主页&#xff1a;C/C语言,Linux基础,ARM开发板&#xff0c;软件配置等领域博主&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff0c;让我们成为一个强大的攻城狮&#xff01;送给自己和读者的一句鸡汤&#x1f914;&…

2023牛客暑期多校训练营7(C/I/M)

目录 C.Beautiful Sequence I.We Love Strings M.Writing Books C.Beautiful Sequence 思路&#xff1a;显然若得到了a[1]&#xff0c;则整个序列a我们都知道了。所以我们要求出第k大的a[1]&#xff0c;这个可以利用序列a为不递减序列的性质来得出。 首先&#xff0c;由题…

LVGL学习笔记 28 - 键盘keyboard

目录 1. 设置关联文本框 2. 设置模式 2.1 LV_KEYBOARD_MODE_TEXT_LOWER 2.2 LV_KEYBOARD_MODE_TEXT_UPPER 2.3 LV_KEYBOARD_MODE_SPECIAL 2.4 LV_KEYBOARD_MODE_NUMBER 2.5 LV_KEYBOARD_MODE_USER_1 ~ LV_KEYBOARD_MODE_USER_4 3. 使能弹窗模式 4. 更改按键布局 5. 事…

【el-image图片查看时 样式穿透表格问题】

element-ui el-image图片查看 样式混乱 解决方式 ::v-deep(.el-table__cell) {position: static !important; // 解决el-image 和 el-table冲突层级冲突问题 }加个样式即可

JavaScript、TypeScript、ES5、ES6之间的联系和区别

ECMAScript&#xff1a; 一个由 ECMA International 进行标准化&#xff0c;TC39 委员会进行监督的语言。通常用于指代标准本身。JavaScript&#xff1a; ECMAScript 标准的各种实现的最常用称呼。这个术语并不局限于某个特定版本的 ECMAScript 规范&#xff0c;并且可能被用于…

大数据扫盲(1): 数据仓库与ETL的关系及ETL工具推荐

在数字化时代&#xff0c;数据成为了企业决策的关键支持。然而&#xff0c;随着数据不断增长&#xff0c;有效地管理和利用这些数据变得至关重要。数据仓库和ETL工具作为数据管理和分析的核心&#xff0c;将帮助企业从庞杂的数据中提取有价值信息。 一、ETL是什么&#xff1f; …

Java的switch语句块

说明 Java的switch语句块可以用于多个分支的判断执行。每个case分支执行完后&#xff0c;要么退出方法体&#xff08;用return语句&#xff09;、要么退出switch语句块&#xff08;用break语句&#xff09;、要么继续往下执行。但如果一个case执行完后&#xff0c;要继续执行下…

在 Android 上使用机器学习套件检测人脸

须知事项 此 API 需要 Android API 级别 19 或更高级别。确保应用的 build 文件使用的 minSdkVersion 值不小于 19。 请务必在您的项目级 build.gradle 文件中的 buildscript 和 allprojects 部分添加 Google 的 Maven 代码库。 将 Android 版机器学习套件库的依赖项添加到模…