STM32 ADC转换器

一、ADC简介

        ADC(Analog-Digital Converter,模拟-数字转换器),可以将引脚上连续变化的模拟量转换为内存中存储的数字量,建立模拟电路到数字电路的桥梁

        模拟量:时间和幅值均连续的信号,例如:变换的电压、电流

        数字量:时间和幅值均离散的信号,例如:单片机中的0和1

        STM32的12位ADC是一种逐次逼近型模/数转换器。它多达18个通道,可测量16个外部和2个内部信号源。个通道的A/D转换可以单次、连续、扫描或间断模式执行。ADC的结果可以左对齐或右对齐的方式存储在16位数据寄存器中

        STM32F103C8T6的ADC资源:ADC1、ADC2,10个外部输入通道

ADC术语:

        分辨率:满刻度电压与2ⁿ的比值,其中n位ADC的位数。例如:12位ADC能够分辨出满刻度1/2¹²(0.024%)的输入电压变化。一个10V满刻度的12位ADC能够分辨输入电压变化的最小值为2.4mV

        转换速率:ADC能够重复进行数据转换的速度,即每秒转换的次数

        绝对精度:在ADC中任何数码所对应的实际模拟电压与其理想的电压之差的最大值

        相对精度:把这个最大偏差表示为满刻度模拟电压的百分数

        线性度:ADC实际转移函数与理想直线的最大偏移

二、ADC结构

2.1 电压输入范围

ADC的输入范围:Vref- < VIN <Vref+

通常Vref+、Vref-和VDDA、VSSA,所以ADC的输入电压也就是:0~3.3V

如果要测量不在0~3.3V内的电压,需要在外部搭建转化电路

2.2 ADC时钟

        由时钟控制器提供的ADCCLK时钟和PCLK2(APB2时钟)同步。RCC控制器为ADC时钟提供一个专用的可编程预分频器

2.3 输入通道

注意: 温度传感器和VREFINT只能出现在主ADC1

对于STM32F103C8T6而言,ADC1与ADC2的外部输入通道相同,对应至PA0~PB1

ADC有16个多路通道。可以把转换组织成两组:规则组和注入组
● 规则组由多达16个转换组成
● 注入组由多达4个转换组成


规则通道:按照一定的顺序规则井然有序的进行转换输出,默认情况下使用的是规则通道。由于数据寄存器只能存储最后一个通道的转换数据,如果转换多通道数据,还需与DMA配合使用

注入通道:

(1)触发注入:如果在规则通道转换期间产生一个外部触发注入,当前转换被复位,注入通道序列被以单次扫描方式进行转换。然后,恢复上次被中断的规则组通道转换

如果在注入通道转换期间产生一个规则事件,注入转换不会被中断,但是规则序列将在注入序列结束后被执行

(2)自动注入:在此模式下,必须禁止注入通道的外部触发。如果设置了自动注入和连续模式、规则通道至注入通道的转换序列被连续执行。如果ADC时钟的预分频系数为4~8,在两通道的转换期间会自动插入1个ADC时钟间隔;如果分频系数为2,则右2个时钟间隔的延迟

所以,注入通道只有在规则通道存在时才会出现

1.利用外部触发或通过设置ADC_CR2寄存器的ADON位,启动一组规则通道的转换。
2.如果在规则通道转换期间产生一外部注入触发,当前转换被复位,注入通道序列被以单次扫描方式进行转换。
3.然后,恢复上次被中断的规则组通道转换。如果在注入转换期间产生规则事件,注入转换不会被中断,但是规则序列将在注入序列结束后被执行。
 

2.3 模式控制

(1)单次转换模式和连续转换模式

单次转换模式:ADC只进行一次转换,每次转换需要触发一次(读取结果时,需要判断结束标志位)

连续转换:当前ADC转换结束后立即启动下一次转换(读取结果时,不需要判断结束标志位)

        每次转换结束后,转换数据被存储在相应的数据寄存器中,EOF(转换结束)/JEOF(注入转换结束)被置位,此外还可申请中断

(2)扫描模式和非扫描模式

        ADC扫描被选中的所有通道。每个组的每个通道执行单次转换,在每个转换结束后,同一组的下一个通道被自动转换

注:非扫描模式下,仅第一个序列有效

        如果设置了连续转换,则不会在选择组的最后一个通道上停止,而是再次从选择组的第一个通道继续转换

(3)间断模式

规则组间断模式:可以用来执行一个短序列的n次转换(n≤8)

例如,n=3,被转换的通道:0、1、2、3、6、7、8、9

①第一次触发,转换序列为0、1、2

②第二次触发,转换序列为3、6、7

③第三次触发,转换序列为8、9,并产生EOC(End of conversion)事件

第四次触发,转换序列为0、1、2

当所有子组被转换完成,下一次触发启动第一个子组的转换

注入组间断模式:可以用来执行一个短序列的n次转换(n≤8)

例如,n=1,被转换的通道:1、2、3

①第一次触发,转换序列为1

②第二次触发,转换序列为2

③第三次触发,转换序列为3,并产生EOC(End of conversion)和JEOF(Injected channel end of conversion)事件

第次触发,转换序列为1

不能同时使用自动注入和间断模式

(4)双ADC模式

2.4 外部触发转换

        转换可以由外部事件触发( 例如定时器捕获, EXTI 线 )。当外部触发信号被选为 ADC 规则或注入转换时,只有它的上升沿可以启动转换。

2.5 DMA请求

        因为 规则通道转换 的值储存在 一个仅有的数据寄存器 中,所以 当转换多个规则通道时需要使用 DMA ,这可以避免丢失已经存储在ADC_DR寄存器中的数据。
        只有在规则通道的转换结束时才产生DMA请求 ,并将转换的数据从 ADC_DR寄存器传输到用户 指定的目的地址。
注: 只有 ADC1ADC3拥有DMA 功能。由 ADC2转化的数据可以通过双ADC模式,利用ADC1的
DMA功能传输

2.6 数据对齐

        注入组通道转换的数据值已经减去了在ADC_JOFRx 寄存器中定义的偏移量,因此结果可以是一 个负值。SEXT 位是扩展的符号值。
        对于规则组通道,不需减去偏移值,因此只有12 个位有效

一般选用右对齐的方式,读出的值就是转换结果

左对齐的方式,相当于将数据左移了4位,也就是:结果=实际数据*16

如果不需要那么高的精度,可以使用左对齐,然后取出高n位,即可

2.7 转换时间

        ADC采样之后,防止外部电压不断变化造成量化、编码的影响,需要将采集到的电压保持一小段时间

        采样时间可由软件进行配置,采样时间越长,越能避免一些毛刺信号的干扰,但相应的转换时间也会延长

2.8 校准

2.9 ADC中断

EOC(End of conversion)和JEOF(Injected channel end of conversion

ADC1 ADC2 的中断映射在 同一个中断向量 上,而 ADC3 的中断有 自己的中断向量

三、ADC相关库函数

3.1 初始化函数:ADC_Init()

3.2 校准函数

3.3 软件触发转换函数

3.4 通道配置:ADC_RegularChannelConfig ()

四、ADC配置

(1)开启ADC、GPIO时钟

(2)配置ADCCLK的分频器

	RCC_ADCCLKConfig(RCC_PCLK2_Div6);  //APB2六分频

(3)配置GPIO,完成初始化(模拟输入)

(4)配置多路开关,把左边的通道接入右边的规则组列表中

	ADC_RegularChannelConfig(ADC1,ADC_Channel_3,1,ADC_SampleTime_1Cycles5);  //在序列1的位置上写入通道3

(5)配置ADC,完成初始化

	ADC_InitTypeDef ADC_InitStruct;ADC_InitStruct.ADC_Mode = ADC_Mode_Independent;  //工作模式:独立模式	ADC_InitStruct.ADC_ContinuousConvMode = DISABLE;  //单次转换ADC_InitStruct.ADC_ScanConvMode = DISABLE;  //非扫描模式	ADC_InitStruct.ADC_DataAlign = ADC_DataAlign_Right;  //数据对齐:右对齐ADC_InitStruct.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;  //外部触发源选择:不使用外部触发ADC_InitStruct.ADC_NbrOfChannel = 1;  //进行规则转换的数目通道ADC_Init(ADC1,&ADC_InitStruct);

(6)中断配置(如果使用中断,需要此步骤)

(7)配置NVIC,完成初始化(如果使用中断,需要此步骤)

(8)校准

	ADC_ResetCalibration(ADC1);  //复位校准while(ADC_GetResetCalibrationStatus(ADC1) == SET);  //复位校准完成ADC_StartCalibration(ADC1);  //开始校准while(ADC_GetCalibrationStatus(ADC1) == SET);  //复位校准完成

(9)使能ADC

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/642055.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

中红医疗:纷享销客CRM系统如何助力​数字化“狂飙”

纷享销客深耕 CRM 多年&#xff0c;可以顺畅打通 CRM 和 ERP 系统客户资源池&#xff0c;将金蝶苍穹平台的物料、产品基础主数据作为档案同步到纷享销客&#xff0c;以便商务维护好产品及库存。 纷享销客通过成熟的集成方案提高系统耦合性&#xff0c;让销售实时获得新产品及营…

40-50W 1.5KVDC 隔离 宽电压输入 DC/DC 电源模块——TP40(50)DC 系列

TP40(50)DC系列电源模块额定输出功率为40-50W、应用于2:1、4&#xff1a;1电压输入范围 9V-18V、18V-36V、36V-75V、9V-36V、18V-75V的输入电压环境&#xff0c;输出电压精度可达1%&#xff0c;可广泛应用于通信、铁路、自动化以及仪器仪表等行业。

React基础知识大汇总

函数组件和类组件 函数组件与类组件有什么区别呢&#xff1f; function getName(params:{name:string}){const count 0;return params.name -count; } getName({name:"test"}) getName({name:"哈哈哈"})getName是一个纯函数&#xff0c;不产生任何副作用…

免费好用的AI绘画生成器推荐,建议收藏!

AI绘画生成器可以根据设计师的需求生成各种风格、主题的绘画作品&#xff0c;无论是现代抽象&#xff0c;还是古典风景&#xff0c;都能应有尽有。任何人只需几步简单操作&#xff0c;都可以轻松使用这款工具&#xff0c;就能生成出令人惊艳的作品。那么免费好用的AI绘画生成器…

C++友元类

友元类 友元类的使用 友元不仅仅适合于友元函数&#xff0c;还可以将类作为友元&#xff0c;在这种情况下&#xff0c;友元类的所有方法都可以访问原始类的私有方法和保护成员&#xff0c;什么时候去使用友元类呢&#xff1f; 两个类之间不存在包含和所属关系&#xff0c;但…

【C++】:构造函数和析构函数

目录 前言一&#xff0c;构造函数**1.1 什么是构造函数****1.2 构造函数的特性**1.3 总结 二&#xff0c;析构函数**2.1 什么是析构函数****2.2 析构函数的特性****2.3 总结** 前言 如果一个类中什么成员都没有&#xff0c;简称为空类。 空类中真的什么都没有吗&#xff1f;并…

电机控制专题(一)——最大转矩电流比MTPA控制

文章目录 电机控制专题(一)——最大转矩电流比MTPA控制前言理论推导仿真验证轻载1Nm重载30Nm 总结 电机控制专题(一)——最大转矩电流比MTPA控制 前言 MTPA全称为Max Torque Per Ampere&#xff0c;从字面意思就可以知道MTPA算法的目的是一个寻优最值问题&#xff0c;可以从以…

06:HAL----定时器

前言&#xff1a; 每来一个TIM 时钟CNT计数器就记一个数&#xff0c;记到某一个程度就会产生溢出。然后ARR就会装载到CNT计数器里面 一:TIM 1:介绍 TIM&#xff08;Timer&#xff09;定时器 定时器可以对输入的时钟进行计数&#xff0c;并在计数值达到设定值时触发中断 16位计…

基于CAPL的HEX文件解析

&#x1f345; 我是蚂蚁小兵&#xff0c;专注于车载诊断领域&#xff0c;尤其擅长于对CANoe工具的使用&#x1f345; 寻找组织 &#xff0c;答疑解惑&#xff0c;摸鱼聊天&#xff0c;博客源码&#xff0c;点击加入&#x1f449;【相亲相爱一家人】&#x1f345; 玩转CANoe&…

武汉大学博士,华为上班5年多,月薪多少。。。

最近&#xff0c;一位来自武汉大学的博士研究生透露了自己在华为公司工作五年后的薪酬情况。 据他透露&#xff0c;他在2018年加入华为时的月薪为2.4万&#xff0c;随着时间的推移&#xff0c;到了2023年&#xff0c;他的月薪已经增长至4.4万&#xff01;此外&#xff0c;他还透…

IntelliJ IDEA2020下使用Maven构建Scala 项目

1.创建maven文件 2.进入pom.xml导入依赖 <!--添加spark的依赖--><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.1</version></dependency><!--添加scala依…

OpenHarmony开源鸿蒙NEXT星河版内核嵌入式编程

一、前景提要 2024年1月18日&#xff0c;华为放出HarmonyOS NEXT 鸿蒙星河版开发者预览版本&#xff08;不是HarmonyOS NEXT版&#xff0c;是HarmonyOS NEXT星河版&#xff09;&#xff0c;首次提到用鸿蒙内核&#xff08;暂命名&#xff09;取代了Linux内核。 该内核源码还未放…