8点法估计基础矩阵

估计基础矩阵

文章目录

  • 估计基础矩阵
    • 8点法
    • 归一化 8点法

8点法

根据两幅图像中8个对应点对之间的关系,采用SVD求 解最小二乘方

约束:det(F) = 0

假设已知N对点的对应关系: { x i , x i ′ } i = 1 N \{x_i,x^{\prime}_i\}_{i=1}^N {xi,xi}i=1N,每对点满足约束: x i ′ F x i = 0 x_i^{\prime}Fx_i=0 xiFxi=0


x = [ u v 1 ] , x ′ = [ u ′ v ′ 1 ] , F = [ f 11 f 12 f 13 f 21 f 22 f 23 f 31 f 32 f 33 ] \boldsymbol{x}=\begin{bmatrix}u\\v\\1\end{bmatrix}, \boldsymbol{x}'=\begin{bmatrix}u'\\v'\\1\end{bmatrix},\boldsymbol{F}=\begin{bmatrix}f_{11}&f_{12}&f_{13}\\f_{21}&f_{22}&f_{23}\\f_{31}&f_{32}&f_{33}\end{bmatrix} x= uv1 ,x= uv1 ,F= f11f21f31f12f22f32f13f23f33
因为 0 = x ′ T F x 0=x^{\prime T}Fx 0=xTFx

求解线齐次坐标下的方程组
[ u ′ v ′ 1 ] [ f 11 f 12 f 13 f 21 f 22 f 23 f 31 f 32 f 33 ] [ u v 1 ] = 0 \begin{bmatrix}u'&v'&1\end{bmatrix}\begin{bmatrix}f_{11}&f_{12}&f_{13}\\f_{21}&f_{22}&f_{23}\\f_{31}&f_{32}&f_{33}\end{bmatrix}\begin{bmatrix}u\\v\\1\end{bmatrix}=0 [uv1] f11f21f31f12f22f32f13f23f33 uv1 =0
即方程组
u ′ u f 11 + u ′ v f 12 + u ′ f 13 + v ′ u f 21 + v ′ v f 22 + v ′ f 23 + u f 31 + v f 32 + f 33 = 0 u'uf_{11}+u'vf_{12}+u'f_{13}+v'uf_{21}+v'vf_{22}+v'f_{23}+uf_{31}+vf_{32}+f_{33}=0 uuf11+uvf12+uf13+vuf21+vvf22+vf23+uf31+vf32+f33=0
转化为矩阵的形式
A f = [ u 1 u 1 ′ u 1 ′ v 1 u 1 ′ v 1 ′ u 1 v 1 ′ v 1 v 1 ′ u 1 v 1 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ u N ′ u N u N ′ v N u N ′ v N ′ u N v N ′ v N v N ′ u N v N 1 ] [ f 11 f 12 f 13 f 21 ⋮ f 33 ] = 0 \boldsymbol{Af}=\begin{bmatrix}u_1u_1'&u_1'v_1&u_1'&v_1'u_1&v_1'v_1&v_1'&u_1&v_1&1\\\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots&\vdots\\u_N'u_N&u_N'v_N&u_N'&v_N'u_N&v_N'v_N&v_N'&u_N&v_N&1\end{bmatrix}\begin{bmatrix}f_{11}\\f_{12}\\f_{13}\\f_{21}\\\vdots\\f_{33}\end{bmatrix}=\mathbf{0} Af= u1u1uNuNu1v1uNvNu1uNv1u1vNuNv1v1vNvNv1vNu1uNv1vN11 f11f12f13f21f33 =0
易知若 f f f是方程的一个解,则 k f kf kf也是方程的一个解,所以添加约束条件 ∥ f ∥ = 0 \|f\|=0 f=0,解得: f f f 的最小二乘解是对应于A的最小奇异值的奇异向量

将A进行SVD分解,得到
A = U Σ V T A=U\Sigma V^T A=UΣVT
其中:

U 的列向量,是 A A T AA^T AAT 的特征向量;

V的列向量,是 A T A A^TA ATA 的特征向量;

A的奇异值( Σ \Sigma Σ 的非零对角元素)则是 A A T AA^T AAT 或者 A T A A^TA ATA 的非零特征值的平方根。

因为可能图像存在噪声干扰的情况,所以目标为最小化 ∥ U Σ V T f ∥ \|U\Sigma V^Tf\| UΣVTf

又因为一个矩阵乘上一个正交矩阵范数不变,所以即最小化 ∥ Σ V T f ∥ \|\Sigma V^Tf\| ∥ΣVTf,切可得 ∥ V T f ∥ = ∥ f ∥ \|V^Tf\|=\|f\| VTf=f

y = V T f y=V^Tf y=VTf

于是目标转化为求满足约束条件 ∥ y ∥ = 1 \|y\|=1 y=1的情况下, ∥ Σ y ∥ \|\Sigma y\| ∥Σy的最小值

因为 Σ \Sigma Σ为特征值降序的对角阵,所以 y = [ 0 , 0 , … , 1 ] T y=[0,0,\dots,1]^T y=[0,0,,1]T

又因为 y = V T f y=V^Tf y=VTf,且 V T = V − 1 V^T=V^{-1} VT=V1

所以 f = V − T y = V y f=V^{-T}y=Vy f=VTy=Vy

于是得到结论: f f f 的最小二乘解是对应于A的最小奇异值的奇异向量

然后将 f f f重组为 F ^ \hat{F} F^

又由于用SVD求解得到的 F ^ \hat{F} F^通常为满秩,而实际上 F F F的秩为2,因此最佳解为秩为2的 F ^ \hat{F} F^近似:
min ⁡ F ∥ F − F ^ ∥ 2 s . t . det ⁡ ( F ) = 0 \begin{aligned}\min_F&\left\|\boldsymbol{F}-\boldsymbol{\widehat{F}}\right\|_2\\ s.t.&\det(\boldsymbol{F}){=}0\end{aligned} Fmins.t. FF 2det(F)=0
F ^ \hat{F} F^进行SVD分解得 F ^ = U D V T \hat{F}=UDV^T F^=UDVT

其中
D = [ σ 1 σ 2 σ 3 ] ( σ 1 ≥ σ 2 ≥ σ 3 ) D=\begin{bmatrix}\sigma_1\\&\sigma_2\\&&\sigma_3\end{bmatrix} \quad(\sigma_1\geq\sigma_2\geq\sigma_3) D= σ1σ2σ3 (σ1σ2σ3)
可得
F = U [ σ 1 σ 2 0 ] V T F=U\begin{bmatrix}\sigma_1\\&\sigma_2\\&&0\end{bmatrix}V^T F=U σ1σ20 VT
即可将下图

转化为

此时极线一致

归一化 8点法

步骤

  1. 归一化坐标:对每幅图像,计算一个相似变换, 并归一化图像坐标 x ^ = T x , x ′ ^ = T ′ x ′ \hat{x}=Tx,\hat{x^{\prime}}=T^{\prime}x^{\prime} x^=Tx,x^=Tx (平移到均值 ,缩放:到原点的平均距离为 2 \sqrt{2} 2
  2. 在归一化后的坐标系中,采用8点法计算 F ^ \hat{F} F^
  3. 反归一: F = T − 1 F ^ T ′ F=T^{-1}\hat{F}T^{\prime} F=T1F^T

然后求解基础矩阵F

解除归一化

因为
x ^ = T x , x ′ ^ = T ′ x ′ \hat{x}=Tx,\hat{x^{\prime}}=T^{\prime}x^{\prime} x^=Tx,x^=Tx

( x ′ ^ ) T F ^ x ^ = 0 ( T ′ x ′ ) T F ^ ( T x ) = 0 ( x ′ ) T ( T ′ T F ^ T ) x = 0 \begin{aligned} (\hat{x^{\prime}})^T\hat F\hat{x}&=0\\ (T^{\prime}x^{\prime})^T\hat F(Tx)&=0\\ (x^{\prime})^T(T^{\prime T}\hat FT)x&=0 \end{aligned} (x^)TF^x^(Tx)TF^(Tx)(x)T(TTF^T)x=0=0=0
可得
F = T ′ T F ^ T F=T^{\prime T}\hat FT F=TTF^T

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/651855.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

go语言并发实战——日志收集系统(十) 重构tailfile模块实现同时监控多个日志文件

前言 在上一篇文章中,我们实现了通过etcd来同时指定多个不同的有关分区与日志文件的路径,但是锁着一次读取配置的增多,不可避免的出现了一个问题:我们如何来监控多个日志文件,这样原来的tailFile模块相对于当下场景就…

EasyRecovery数据恢复软件2025激活码及下载使用步骤教程

EasyRecovery数据恢复软件是一款功能强大且用户友好的数据恢复工具,专为帮助用户找回因各种原因丢失的数据而设计。该软件由全球知名的数据恢复技术公司开发,经过多年的技术积累和更新迭代,已经成为行业内备受推崇的数据恢复解决方案。 EasyR…

WildCard开通GitHub Copilot

更多AI内容请关注我的专栏:《体验AI》 期待您的点赞👍收藏⭐评论✍ WildCard开通GitHub Copilot GitHub Copilot 简介主要功能工作原理 开通过程1、注册Github账号2、准备一张信用卡或虚拟卡3、进入github copilot页4、选择试用5、选择支付方式6、填写卡…

AM解调 FPGA(寻找复刻电赛电赛D题的)

设计平台 Quartus II10.3mif产生工具modelsimSE (仿真用) DDS(直接数字式频率合成器) 从前面的内容可知,我们需要产生一个载波,并且在仿真时,我们还需要一个较低频率的正弦波信号来充当我们的…

中电金信:深度解析|数字化营销运营体系搭建

如何更好更快地梳理好体系搭建思路,稳步实现落地?下文将为大家明确搭建的推进步骤、执行要点,帮助商业银行理顺数字化营销运营体系的“点”“线”“面”~ 与所有转型的曲折、阵痛等特征一样,商业银行构建数字化营销运营体系过程中…

泛微E9开发 如何自定义流程标题

1、功能背景 主表中有“选择类别”下拉框字段,用户可以根据需求来选择申请类别,一般多个相似流程的申请可以合并成一个,但是为了区分,我们可以通过将标题修改的方式来使整个显示页面更明确。 2、展示效果 3、实现方法 注意&…

【算法基础实验】图论-构建无向图

构建无向图 前提 JAVA实验环境 理论 无向图的数据结构为邻接表数组,每个数组中保存一个Bag抽象数据类型(Bag类型需要专门讲解) 实验数据 我们的实验数据是13个节点和13条边组成的无向图,由一个txt文件来保存,本…

php 编译安装oracel扩展

第一步安装Oracle客户端 1,需要下载基础包和sdk oracle客户端下载链接:Oracle Instant Client Downloads for Linux x86-64 (64-bit) https://www.oracle.com/database/technologies/instant-client/linux-x86-64-downloads.html 选择最新版本 versi…

[C++基础学习]----03-程序流程结构之循环结构详解

前言 在C程序中,循环结构在用于重复执行一段代码块,直到满足某个条件为止。循环结构有多种形式,包括while循环、do-while循环和for循环。 正文 01-循环结构简介 1、while循环语句: while循环在每次循环开始前检查条件是否为真&a…

clickhouse与oracle传输数据

参考 https://github.com/ClickHouse/clickhouse-jdbc-bridge https://github.com/ClickHouse/clickhouse-jdbc-bridge/blob/master/docker/README.md clickhouse官方提供了一种方式,可以实现clickhouse与oracle之间传输数据,不仅仅是oracle&#xff0…

python 使用flask_httpauth和pyjwt实现登录权限控制

最近需要用到,学习了一下记录 首先安装依赖 pip install Flask-HTTPAuth pyjwt passlib Welcome to Flask-HTTPAuth’s documentation! — Flask-HTTPAuth documentation Welcome to PyJWT — PyJWT 2.8.0 documentation Passlib 1.7.4 documentation — Passl…

【北京迅为】《iTOP龙芯2K1000开发指南》-第四部分 ubuntu开发环境搭建

龙芯2K1000处理器集成2个64位GS264处理器核,主频1GHz,以及各种系统IO接口,集高性能与高配置于一身。支持4G模块、GPS模块、千兆以太网、16GB固态硬盘、双路UART、四路USB、WIFI蓝牙二合一模块、MiniPCIE等接口、双路CAN总线、RS485总线&#…