【学习AI-相关路程-工具使用-自我学习-cudavisco-开发工具尝试-基础样例 (2)】

【学习AI-相关路程-工具使用-自我学习-cuda&visco-开发工具尝试-基础样例 (2)】

  • 1、前言
  • 2、环境说明
  • 3、总结说明
  • 4、工具安装
      • 0、验证cuda
      • 1、软件下载
      • 2、插件安装
  • 5、软件设置与编程练习
      • 1、创建目录
      • 2、编译软件进入目录&创建两个文件
      • 3、编写配置文件
      • 5、编写代码文件
      • 6、调试&验证
      • 7、代码解读
          • (1)包含头文件和定义CUDA内核
          • (2)主函数内的变量定义和内存分配
          • (3)初始化向量并复制到设备
          • (4)内核调用
          • (5)检查错误和回复结果
          • (6)验证结果
          • (7)清理内存
  • 6、代码链接
  • 7、细节部分
      • 1、问题1:一个错误
      • 2、问题:使用命令nvidia-smi,无法调出如下信息。
      • 3、Tasks:configure tasks,自动创建tasks.json
  • 8、总结

1、前言

我们之前安装了cuda,但是我们其实是无法直接使用cuda的,还需要编译器,类似前端,供我们输入代码,好让我们可以将思想延伸。

同时也本篇,也是续写上一篇,我们将在本篇安装开发工具,来写一个简单dome,调用cuda平台相关套件,相当hello world。

前文链接:【学习AI-相关路程-工具使用-自我学习-NVIDIA-cuda-工具安装 (1)】

2、环境说明

这里准备安装Visual Studio code 这个工具,可以看到,只用这个工具是支持不同系统的,visual studio,只是支持win下。

下载链接:https://visualstudio.microsoft.com/zh-hans/

在这里插入图片描述

当然如果使用运行cuda,还可以使用Python 语言,是使用另一个工具,目前自己刚学到这里,以后要是学了再写文章。

3、总结说明

(1)了解Visual Studio code
一般来说,想编写程序的话,或多或少,都会了解到这个工具,即使没用过,也会听过。更多的可以看文档。
链接文档:https://code.visualstudio.com/docs
在这里插入图片描述
如果因为不太好,可以选择一些翻译工具。

(2)装插件和cuda
安装好了编译工具后,就是安装插件工具,因为Visual Studio code本身支持很多,不是一起全部安装的,需要根据自己需求灵活选。

(3)练习代码
最后就是练习一下代码,调用对库,在编译好的软件,运行过程中,就是在使用GPU了。我们通过这个简单样例,来熟悉一下一些库。

4、工具安装

0、验证cuda

使用其他工具前,先要验证下,自己是否已经支持了cuda,或者说是否已经安装了cuda。

nvcc -V
或者
nvcc --version

一般来说安装好后,会出现如下信息。
在这里插入图片描述

1、软件下载

如下链接,选择一个自己合适的版本。

下载链接:https://visualstudio.microsoft.com/zh-hans/#vscode-section

在这里插入图片描述
安装命令:

sudo dpkg -i code_1.89.0-1714530869_amd64.deb

2、插件安装

如下图,我这里编写c/c++语言和cuda,一搜基本就会出来。
在这里插入图片描述

如下是我自己的选择的插件
在这里插入图片描述

5、软件设置与编程练习

1、创建目录

我们先在桌面创建一个文件夹,自己自己定就好,不必和我一致。

在这里插入图片描述

2、编译软件进入目录&创建两个文件

我们用Visual Studio code软件进入对应目录,然后创建两个文件。之后就是准备编写内容了。
在这里插入图片描述

3、编写配置文件

配置文件,顾名思义,就是告诉编译器,去哪里找工具,使用什么工具编译等等配置信息的文件。

{"version": "2.0.0","tasks": [{"label": "Build CUDA project","type": "shell","command": "/usr/local/cuda/bin/nvcc","args": ["-arch=sm_35", // 根据你的GPU架构适当修改"${file}","-o","${fileDirname}/${fileBasenameNoExtension}.out"],"group": {"kind": "build","isDefault": true},"problemMatcher": "$gcc"}]
}

如下为截图。
在这里插入图片描述

5、编写代码文件

代码文件,就是我们实际要编写代码的文件,也是我们想法延伸。

#include <stdio.h>// CUDA Kernel for Vector Addition
__global__ void vecAdd(float *A, float *B, float *C, int N) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < N) {C[i] = A[i] + B[i];}
}int main() {int N = 1024; // Size of vectorsfloat *h_A, *h_B, *h_C; // Host vectorsfloat *d_A, *d_B, *d_C; // Device vectors// Allocate memory on hosth_A = (float *)malloc(N * sizeof(float));h_B = (float *)malloc(N * sizeof(float));h_C = (float *)malloc(N * sizeof(float));// Initialize host vectorsfor (int i = 0; i < N; i++) {h_A[i] = i;h_B[i] = i * 2;}// Allocate memory on devicecudaMalloc(&d_A, N * sizeof(float));cudaMalloc(&d_B, N * sizeof(float));cudaMalloc(&d_C, N * sizeof(float));// Copy host vectors to devicecudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);// Kernel launchint threadsPerBlock = 256;int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;vecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);// Check for any errors launching the kernelcudaError_t err = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to launch vecAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Copy result back to hostcudaMemcpy(h_C, d_C, N * sizeof(float), cudaMemcpyDeviceToHost);// Check for any errors after the kernel launcherr = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to copy vector C from device after kernel execution (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}// Verify resultsbool success = true;for (int i = 0; i < N; i++) {if (h_C[i] != h_A[i] + h_B[i]) {printf("Error at position %d\n", i);success = false;break;}}if (success) {printf("Vector addition successful!\n");}// Free memoryfree(h_A);free(h_B);free(h_C);cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);return 0;
}

以下为截图
在这里插入图片描述

6、调试&验证

自己在调试

(1)调试
在这里插入图片描述

(2)成功
在这里插入图片描述

7、代码解读

本代码是在网上找到一个样例,是一个使用CUDA进行向量加法的简单例子。

简单理解下,以后看多了大概就明白了。

(1)包含头文件和定义CUDA内核
#include <stdio.h>// CUDA Kernel for Vector Addition
__global__ void vecAdd(float *A, float *B, float *C, int N) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < N) {C[i] = A[i] + B[i];}
}
(2)主函数内的变量定义和内存分配
int main() {int N = 1024; // Size of vectorsfloat *h_A, *h_B, *h_C; // Host vectorsfloat *d_A, *d_B, *d_C; // Device vectorsh_A = (float *)malloc(N * sizeof(float));h_B = (float *)malloc(N * sizeof(float));h_C = (float *)malloc(N * sizeof(float));cudaMalloc(&d_A, N * sizeof(float));cudaMalloc(&d_B, N * sizeof(float));cudaMalloc(&d_C, N * sizeof(float));
(3)初始化向量并复制到设备
    for (int i = 0; i < N; i++) {h_A[i] = i;h_B[i] = i * 2;}cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);
(4)内核调用
    int threadsPerBlock = 256;int blocksPerGrid = (N + threadsPerBlock - 1) / threadsPerBlock;vecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
(5)检查错误和回复结果
    cudaError_t err = cudaGetLastError();if (err != cudaSuccess) {fprintf(stderr, "Failed to launch vecAdd kernel (error code %s)!\n", cudaGetErrorString(err));exit(EXIT_FAILURE);}cudaMemcpy(h_C, d_C, N * sizeof(float), cudaMemcpyDeviceToHost);
(6)验证结果
    bool success = true;for (int i = 0; i < N; i++) {if (h_C[i] != h_A[i] + h_B[i]) {printf("Error at position %d\n", i);success = false;break;}}if (success) {printf("Vector addition successful!\n");}
(7)清理内存
    free(h_A);free(h_B);free(h_C);cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);

6、代码链接

代码链接:https://download.csdn.net/download/qq_22146161/89273073

7、细节部分

1、问题1:一个错误

具体什么错误有点记不清了,这里记录下吧。
在这里插入图片描述

2、问题:使用命令nvidia-smi,无法调出如下信息。

在这里插入图片描述
如上图,自己在安装过程中,突然发现nvidia-smi命令,因为一直安装各种东西,应该是影响到了,不反馈信息,后重启解决了

3、Tasks:configure tasks,自动创建tasks.json

稍微有点时间,不过我没记错的话,使用 查看>>命令面板,可以直接创建这个tasks.json文件。
在这里插入图片描述
如下步骤

在这里插入图片描述
在这里插入图片描述

8、总结

很多时候,其实是无法理解每一步,只有常看,才能大致记住,更多调试,后续也会慢慢学习。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/671229.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录算法训练营第三天 | 链表理论基础,203.移除链表元素,707.设计链表,206.反转链表

对于链表完全陌生&#xff0c;但是看题目又觉得和数组一样的 链表理论基础 Q&#xff1a;什么是链表&#xff1f; A&#xff1a;链表是由一系列结点组成的。每一个结点由两部分组成&#xff1a;数据和指针。 203.移除链表元素 题目&#xff1a; 给你一个链表的头节点 head 和…

【电影】【指环王】【中土世界】影碟播放记录

一、写在前面 笔者于5月5日&#xff08;昨天&#xff09;在新加坡淘到了一套《指环王 The Lord of the Rings》DVD光碟&#xff0c;今天却听闻噩耗&#xff0c;Rohan国王Theoden的扮演者&#xff0c;英国演员Bernard Hill去世&#xff08;享年79岁&#xff09;&#xff0c;发文…

从键入网址到网页显示,期间发生了什么?

从键入网址到网页显示&#xff0c;期间发生了什么&#xff1f; 孤单小弟【HTTP】真实地址查询【DNS】指南帮手【协议栈】可靠传输【TCP】远程定位【IP】两点传输【MAC】出口【网卡】送别者【交换机】出境大门【路由器】互相扒皮【服务器与客户端】相关问答 不少小伙伴在面试过程…

一竞技MSI:淘汰赛抽签结果出炉 BLG和T1同半区,TES首轮交手TL!

北京时间5月6日&#xff0c;MSI在今天进入短暂的休赛&#xff0c;在昨天结束的入围赛之后&#xff0c;PSG战队作为外卡赛区唯一的队伍进入到正赛&#xff0c;另外欧洲赛区的FNC战队也是击败GAM战队拿到正赛的资格。在比赛结束之后&#xff0c;也是进行了淘汰赛的胜败分组赛的抽…

GateWay检查接口耗时

添加gateway依赖 <dependency><groupId>org.springframework.cloud</groupId><artifactId>spring-cloud-starter-gateway</artifactId> </dependency>创建一个LogTimeGateWayFilterFactory类&#xff0c;可以不是这个名字但是后面必须是x…

关于蓝队应急响应工具箱意见征集

前言 征集一下各位师傅的意见&#xff0c;没用过的师傅可以去以往的文章下载使用&#xff1a; 下载地址&#xff08;有个小小改动&#xff0c;去除了必要的python环境&#xff0c;使其占用空间更小&#xff09;&#xff1a; [护网必备]知攻善防实验室蓝队应急响应工具箱v202…

动态规划算法:路径问题

例题一 解法&#xff08;动态规划&#xff09;&#xff1a; 算法思路&#xff1a; 1. 状态表⽰&#xff1a; 对于这种「路径类」的问题&#xff0c;我们的状态表⽰⼀般有两种形式&#xff1a; i. 从 [i, j] 位置出发&#xff0c;巴拉巴拉&#xff1b; ii. 从起始位置出…

(读书笔记-大模型) LLM Powered Autonomous Agents

目录 智能体系统的概念 规划组件 记忆组件 工具组件 案例研究 智能体系统的概念 在大语言模型&#xff08;LLM&#xff09;赋能的自主智能体系统中&#xff0c;LLM 充当了智能体的大脑&#xff0c;其三个关键组件分别如下&#xff1a; 首先是规划&#xff0c;它又分为以下…

idea无法识别加载pom.xml文件

有时idea无法识别加载pom.xml文件&#xff0c;直接打开pom.xml文件&#xff0c;然后添加到maven就行

创新指南|非凡时代的变革型领导力——五个领导力差异化优势将使高管能够重塑他们的组织

大多数商界领袖现在都明白&#xff0c;我们正在经历一场“伟大的重构”&#xff0c;整个行业、经济和社会都在重塑的时期。然而&#xff0c;考虑到他们面临的短期压力&#xff0c;很少有高管发现自己能够真正应对这些变化&#xff0c;这些变化对他们的组织所需的转型意味着什么…

知识图谱在提升大语言模型性能中的应用:减少幻觉与增强推理的综述

幻觉现象指的是模型在生成文本时可能会产生一些听起来合理但实际上并不准确或相关的输出&#xff0c;这主要是由于模型在训练数据中存在知识盲区所致。 为了解决这一问题&#xff0c;研究人员采取了多种策略&#xff0c;其中包括利用知识图谱作为外部信息源。知识图谱通过将信息…

25.哀家要长脑子了---哈希表

1.525. 连续数组 - 力扣&#xff08;LeetCode&#xff09; 在我对通义千问的一番折磨下&#xff0c;终于弄清楚一点点了。哈希表存储前缀和数组值 用一个counter来记录nums中0、1数量差值的变化。 哈希表map存储某个特定的counter值首次出现的位置。counter的计算&#xff1a;…