【自动驾驶|毫米波雷达】逻辑化讲清快时间与慢时间傅里叶变换

碎碎念:实习过程中发现在进行雷达知识交流时,大部分同事都会用英文简称代替中文的一些称呼,比如Chirp、FFT等等。起初我觉得是因为很多英伟达、TI芯片的开发教程都是英文的,所以看得多了大家都习惯这样称呼,后来在和指导我的前辈交流时发现是因为国内对于一个步骤都有很多称呼,比如说我们接下来讲的快时间傅里叶变换又称为距离维傅里叶变换慢时间傅里叶变换又称为速度维傅里叶变换,但他们的英文专有名称只有一个,分别是Range FFTDoppler FFT。用英文称呼的原因更是为了精确性,也不用让大家记那么多名词。同时前辈也告诫我在学习时候不要怕麻烦,要把每一个缩写的全程都要标注好记忆好,才能对于系统更加熟悉。

引入

毫米波雷达系列文章中我们一再强调的是时刻关注我们的“目录”,也就是我们的框架,那我们来看一下快时间与慢时间傅里叶变化在雷达处理流程的哪一步:

毫米波雷达工作流程图

图中可以发现快时间傅里叶变换(又称距离FFT,Range FFT)在ADC采样结束后,毫米波雷达进一步讲快时间傅里叶变换后的数据进行慢时间傅里叶变换(又称二维FFT,Doppler FFT)

那我们需要来想象一下ADC采样后的数据是什么样的呢?

信号通过ADC采样后会得到一个由chirp采样点、采样个数以及通道/天线数组成的三维数据块(Radar Data Cube)。得到的数据仍然是离散的时域信号点,我们需要通过傅里叶变换求得频谱图,从而求得目标的距离信息以及速度信息。

ADC采样后的Radar Data Cube

 

 

原理推导

这里会先推导RFFT与DFFT共性的原理,在各自的部分会进行进一步推导:

天线发射信号与接收信号进行混频滤波后,可以表示为:

 其中K代表FM调制常数(也就是时频图的斜率),f_d代表差频(即IF信号的频率),n代表采样点,f_s代表单个chirp中的采样率,T_0代表单个chirp周期。根据:

\frac{2R}{c}=\tau ,\frac{n}{f_s}=t_{fast},pT_0=t_{fast}

可以将采样后的信号表示为:

此时的信号中含有参数时间差\tau差频f_d,故可进一步通过傅里叶变换求解这两个参数。

快时间傅里叶变换(Range FFT)

我们认为在一个chirp周期中,由于电磁波的速度极快的特性,所以时间是非常短的,也就是时间很“快”。同时也可以将目标对象在快时间内的移动近似没有,所以在快时间维度来看目标物体几乎“静止”,以快时间为时域的时间维度对信号进行傅里叶变换,其距离也就非常容易测量

在进行快时间傅里叶变换时,将慢时间看作常数,即仅仅做一个chirp周期内的傅里叶变换(对应于radar cube中的每一行做FFT),即可求得时间差\tau ,根据:

\frac{2\tau}{c}=R

即可求得对应物体的距离R。

慢时间傅里叶变换(又称二维FFT,Doppler FFT)

 相对于一个chirp周期的时间,不同chirp之间的间隔时长就会相对更“长”,也就是时间会相对更“慢”,以慢时间为时域的时间维度,结合快时间的傅里叶变换我们就可以计算出目标的速度信息

在进行慢时间傅里叶变换时,将快时间看作常数,以每个chirp间隔作为时间轴进行进行傅里叶变换(对应于radar cube中的每一列再做FFT),对应频谱图中的最高点即为差频fd,根据:

\frac{\lambda }{2}\cdot f_d=v

即可求得目标物体的速度信息v。

两次FFT后的图像(左)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/675650.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信小程序15: 小程序组件

创建组件 ①在项目的根目录中,鼠标右键,创建components -> test文件夹 ②在新建的components -> test文件夹上,鼠标右键,点击“新建Component‘ ③键入组件的名称之后回车,会自动生成组件对应的4个文件&#…

Mysql数据在磁盘上的存储结构

一. 前言 一行数据的存储格式大致如下所示: 变长字段的长度列表,null值列表,数据头,column01的值,column02的值,column0n的值… 二. 变长字段 在MySQL里有一些字段的长度是变长的,是不固定的,…

如何获得一个Oracle 23ai数据库(RPM安装)

准确的说,是Oracle 23ai Free Developer版,因为企业版目前只在云上(OCI和Azure)和ECC上提供。 方法包括3种,本文介绍第2种: Virtual ApplianceRPM安装Docker RPM安装支持Linux 8和Linux 9。由于官方的Vi…

sprig 项目启动时报错:MybatisDependsonDatabaseInitializationDetector

问题 使用application.yml启动项目报错: 解决方案 修改pom.xml: 修改这两处的版本

在QEMU上运行OpenSBI+Linux+Rootfs

在QEMU上运行OpenSBILinuxRootfs 1 编译QEMU2 安装交叉编译工具3 编译OpenSBI4 编译Linux5 创建根文件系统5.1 编译busybox5.2 创建目录结构5.3 制作文件系统镜像5.3.1 创建 ext2 文件5.3.2 将目录结构拷贝进 ext2 文件5.3.3 取消挂载 6 运行OpenSBILinuxRootfs 本文所使用的版…

Facebook革命:数字社交的全新篇章

随着互联网的不断普及和科技的飞速发展,社交媒体已经成为现代社会不可或缺的一部分。在众多社交媒体平台中,Facebook以其广泛的用户群体和强大的功能而备受瞩目。然而,Facebook并非止步于现状,而是正在掀起一场数字社交的革命&…

环保访谈|浙江双视专注红外机器视觉及智能化应用,保障安全生产

近期,中联环保圈希姐采访了浙江双视科技股份有限公司环保行业销售总监孙波,深入了解了双视科技的发展历程、产品和解决方案、合作流程、核心竞争力以及未来规划。 双视于2014年创立,专注于红外机器视觉、人工智能技术与应用开发,…

矩阵相关运算1

矩阵运算是线性代数中的一个核心部分,它包含了许多不同类型的操作,可以应用于各种科学和工程问题中。 矩阵加法和减法 矩阵加法和减法需要两个矩阵具有相同的维度。操作是逐元素进行的: CAB or CA−B其中 A,B 和 C 是矩阵,且 C…

简单了解泛型

基本数据类型和对应的包装类 在Java中, 基本数据类型不是继承自Object, 为了在泛型代码中可以支持基本类型, Java给每个基本类型都对应了一个包装类型. 简单来说就是让基本数据类型也能面向对象.基本数据类型可以使用很多方法, 这就必须让它变成类. 基本数据类型对定的包装类…

HDLC协议

目录 1.概念 2.配置 3.HDLC帧结构 4.HDLC帧类型 1.概念 HDLC(High-level Data Link Control)高级数据链路控制位于链路层协议,传输单位是帧,它是一组用于在网络结点间传送数据的协议。其特点是各项数据和控制信息都以比特为单位&#xff…

神经网络极简入门

神经网络是深度学习的基础,正是深度学习的兴起,让停滞不前的人工智能再一次的取得飞速的发展。 其实神经网络的理论由来已久,灵感来自仿生智能计算,只是以前限于硬件的计算能力,没有突出的表现,直至谷歌的A…

bfs之八数码

文章目录 八数码解题思路图解举例算法思路 代码CPP代码Java代码 八数码 在一个 33的网格中,1∼8这 8个数字和一个 x 恰好不重不漏地分布在这 33 的网格中。 例如: 1 2 3 x 4 6 7 5 8在游戏过程中,可以把 x 与其上、下、左、右四个方向之一…