【R语言】生存分析模型

生存分析模型是用于研究时间至某个事件发生的概率的统计模型。这个事件可以是死亡、疾病复发、治疗失败等。生存分析模型旨在解决在研究时间相关数据时的挑战,例如右侧截尾(右侧截尾表示未观察到的事件发生,例如研究结束时还未发生事件)和数据缺失。

生存分析模型最常用的是 Cox 比例风险模型,也称为 Cox 回归模型,它是一种半参数化的模型,用于估计时间相关数据中危险比(hazard ratio)的关系。危险比描述了不同条件下事件发生的概率之比。在 Cox 比例风险模型中,假设危险函数是可共享的,即不受时间的影响,而危险比只依赖于协变量的值。

除了 Cox 比例风险模型外,还有其他类型的生存分析模型,如加速失效时间模型(accelerated failure time model)、Weibull 比例风险模型等。这些模型在不同的数据情况下可能更适用,具体取决于研究的问题和数据的性质。

生存分析模型通常应用于医学、流行病学、社会科学等领域,用于研究疾病生存率、药物治疗效果、生存质量等方面。以下通过Cox模型做一个生存风险分析:

 

 代码如下:

if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/survminer", build_vignettes = FALSE)
library("survminer")
require("survival")
fit <- survfit(Surv(time, status) ~ sex, data = lung)
ggsurvplot(fit, data = lung)ggsurvplot(fit, data = lung, censor.shape="|", censor.size = 4)
  1. 首先,它检查是否已经安装了 devtools 包。devtools 是一个用于在 R 中开发和安装包的工具包。如果没有安装,它会使用 install.packages() 函数安装 devtools 包。

  2. 接下来,它使用 devtools 包中的 install_github() 函数从 GitHub 上安装 survminer 包。survminer 是一个 R 包,提供了用于生存分析可视化的工具和函数。

  3. 一旦 survminer 包安装完成,代码通过 library() 函数加载了 survminer 包以便后续使用。library("survminer")survminer 包加载到 R 的工作环境中。

  4. 然后,代码使用 require() 函数来检查是否已经加载了 survival 包。survival 包是一个用于生存分析的常用包。如果未加载,require() 函数会加载 survival 包。

  5. survfit() 函数用于拟合生存分析模型。在这个例子中,它拟合了一个 Cox 比例风险模型,其中生存时间由 time 变量表示,事件状态由 status 变量表示,与性别 sex 之间的关系进行建模。这个模型是基于 lung 数据集。

  6. 最后,ggsurvplot() 函数用于绘制生存曲线图。它接收拟合的生存分析模型 fit 和数据集 lung 作为输入,并生成一个生存曲线图,用于可视化不同性别在生存时间上的差异。

 代码如下:

ggsurvplot(fit,data = lung,size = 1,                 # 改变线条大小palette =c("#E7B800", "#2E9FDF"),# 自定义颜色调色板conf.int = TRUE,          # 添加置信区间pval = TRUE,              # 添加 p 值risk.table = TRUE,        # 添加风险表risk.table.col = "strata",# 风险表按组着色legend.labs =c("男性", "女性"),      # 更改图例标签risk.table.height = 0.25, # 当有多个组时,修改风险表高度很有用ggtheme = theme_bw()      # 更改 ggplot2 主题为黑白风格
)

这段代码调用了 ggsurvplot() 函数,用于绘制生存曲线图,并设置了一些参数进行绘图的自定义。

  • size = 1:改变生存曲线的线条大小。
  • palette = c("#E7B800", "#2E9FDF"):定义了两个颜色,用于表示不同性别的生存曲线。
  • conf.int = TRUE:在生存曲线上添加了置信区间。
  • pval = TRUE:在生存曲线图上添加了 p 值。
  • risk.table = TRUE:在图的旁边添加了风险表。
  • risk.table.col = "strata":根据不同的组(strata)对风险表进行了着色。
  • legend.labs = c("男性", "女性"):将图例标签更改为了 "男性" 和 "女性"。
  • risk.table.height = 0.25:当有多个组时,可以使用此参数来修改风险表的高度。
  • ggtheme = theme_bw():将 ggplot2 的主题更改为了黑白风格。

 

代码如下: 

ggsurvplot(fit,                     # 拟合生存曲线的 survfit 对象。data = lung,             # 用于拟合生存曲线的数据集。risk.table = TRUE,       # 显示风险表。pval = TRUE,             # 显示 log-rank 检验的 p 值。conf.int = TRUE,         # 显示生存曲线点估计的置信区间。xlim = c(0,500),         # 设置 X 轴范围为 0 到 500 天。xlab = "时间(天)",      # 自定义 X 轴标签。break.time.by = 100,     # 按 100 天的时间间隔分割 X 轴。ggtheme = theme_light(), # 使用 theme_light() 函数定制绘图和风险表的主题。risk.table.y.text.col = T, # 颜色风险表文本注释。risk.table.y.text = FALSE # 在风险表的文本注释中显示条形图而不是名称。
)

这段代码调用了 ggsurvplot() 函数,用于绘制生存曲线图,并设置了一些参数进行绘图的自定义。

  • fit:拟合生存曲线的 survfit 对象。
  • data = lung:用于拟合生存曲线的数据集。
  • risk.table = TRUE:显示风险表。
  • pval = TRUE:显示 log-rank 检验的 p 值。
  • conf.int = TRUE:显示生存曲线点估计的置信区间。
  • xlim = c(0,500):设置 X 轴范围为 0 到 500 天。
  • xlab = "时间(天)":自定义 X 轴标签为 "时间(天)"。
  • break.time.by = 100:按 100 天的时间间隔分割 X 轴。
  • ggtheme = theme_light():使用 theme_light() 函数定制绘图和风险表的主题。
  • risk.table.y.text.col = T:颜色风险表文本注释。
  • risk.table.y.text = FALSE:在风险表的文本注释中显示条形图而不是名称。

 代码如下:

ggsurv <- ggsurvplot(fit,                     # 拟合生存曲线的 survfit 对象。data = lung,             # 用于拟合生存曲线的数据集。risk.table = TRUE,       # 显示风险表。pval = TRUE,             # 显示 log-rank 检验的 p 值。conf.int = TRUE,         # 显示生存曲线点估计的置信区间。palette = c("#E7B800", "#2E9FDF"), # 自定义颜色调色板。xlim = c(0,500),         # 设置 X 轴范围为 0 到 500 天。xlab = "时间(天)",      # 自定义 X 轴标签。break.time.by = 100,     # 按 100 天的时间间隔分割 X 轴。ggtheme = theme_light(), # 使用 theme_light() 函数定制绘图和风险表的主题。risk.table.y.text.col = T, # 颜色风险表文本注释。risk.table.height = 0.25, # 风险表的高度。risk.table.y.text = FALSE, # 在风险表的文本注释中显示条形图而不是名称。ncensor.plot = TRUE,      # 绘制时间 t 处被截尾的观察数。ncensor.plot.height = 0.25, # 截尾观察数的高度。conf.int.style = "step",  # 自定义置信区间的样式。surv.median.line = "hv",  # 添加中位生存指针。legend.labs =c("男性", "女性")      # 更改图例标签。
)
ggsurv

这段代码调用了 ggsurvplot() 函数来创建一个生存曲线图,并将结果存储在名为 ggsurv 的变量中,然后打印出这个生存曲线图。

  • ncensor.plot = TRUE:绘制时间 t 处被截尾的观察数。
  • ncensor.plot.height = 0.25:截尾观察数的高度。
  • conf.int.style = "step":自定义置信区间的样式为 "step"。
  • surv.median.line = "hv":添加中位生存指针,指定其样式为水平垂直线。
  • legend.labs = c("男性", "女性"):更改图例标签为 "男性" 和 "女性"。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/679227.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JAVA队列相关习题4

1. 用队列实现栈。 225. 用队列实现栈 - 力扣&#xff08;LeetCode&#xff09; 一个队列无法实现栈 尝试使用两个队列 1)push元素的时候应当放在那里&#xff1f;哪个队列不为空就放在哪里 2&#xff09;出栈的时候&#xff0c;出不为空的队列size-1元素&#xff0c;剩余元…

flowable一对并发网关跳转的分析

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码&#xff1a; https://gitee.com/nbacheng/ruoyi-nbcio 演示地址&#xff1a;RuoYi-Nbcio后台管理系统 http://218.75.87.38:9666/ 更多nbcio-boot功能请看演示系统 gitee源代码地址 后端代码&#xff1a; h…

MSTSC无法远程桌面连接,MSTSC无法远程桌面连接的原因与解决方案

在信息技术领域&#xff0c;远程桌面连接是一种非常常见的操作&#xff0c;它允许用户通过网络从一台计算机访问和操作另一台计算机。然而&#xff0c;有时在使用Microsoft的远程桌面连接工具&#xff08;MSTSC&#xff09;时&#xff0c;我们可能会遇到无法建立连接的问题。这…

《Python编程从入门到实践》day22

# 昨日知识点回顾 方法重构、驾驶飞船左右移动、全屏显示 飞船不移动解决&#xff0c;问题出在移动变量x更新 # Ship.pysnipdef update(self):"""根据移动标志调整飞船的位置"""# 更新飞船而不是rect对象的x值# 如果飞船右移的标志和飞船外接…

神经网络案例实战

&#x1f50e;我们通过一个案例详细使用PyTorch实战 &#xff0c;案例背景&#xff1a;你创办了一家手机公司&#xff0c;不知道如何估算手机产品的价格。为了解决这个问题&#xff0c;收集了多家公司的手机销售数据&#xff1a;这些数据维度可以包括RAM、存储容量、屏幕尺寸、…

STC8增强型单片机开发——库函数

一、使用库函数点灯 导入库函数。 下载STC8H的库函数&#xff1a;&#x1f4ce;STC8G-STC8H-LIB-DEMO-CODE_2023.07.17_优化版.zip 来到库函数的目录下&#xff0c;拷贝以下文件&#xff1a; Config.hType_def.hGPIO.hGPIO.c 新建项目&#xff0c;将拷贝的4个文件放到项目目录…

Ps中 饱和度 和 自然饱和度 的区别?

1.饱和度&#xff08;Saturation&#xff09;&#xff1a;在Photoshop中&#xff0c;饱和度是一个全局性调整&#xff0c;它影响图像中所有颜色的鲜艳程度。当你增加饱和度时&#xff0c;所有的颜色都会变得更浓烈、更鲜艳&#xff1b;相反&#xff0c;减小饱和度会使图像整体变…

嵌入式Linux的QT项目CMake工程模板分享及使用指南

在嵌入式linux开发板上跑QT应用&#xff0c;不同于PC上的开发过程。最大的区别就是需要交叉编译&#xff0c;才能在板子上运行。 这里总结下嵌入式linux环境下使用CMake&#xff0c;嵌入式QT的CMake工程模板配置及如何使用&#xff0c;分享给有需要的小伙伴&#xff0c;有用到的…

关于ssrf

首先&#xff0c;先介绍一下ssrf。ssrf即服务器端请求伪造&#xff0c;是一种由攻击者构造形成由服务端发起请求的一个安全漏洞。一般情况下&#xff0c;SSRF攻击的目标是从外网无法访问的内部系统。而且因为请求是由服务端发起的&#xff0c;所以服务端能请求到与自身相连而与…

路由策略与路由控制

1.路由控制工具 匹配工具1&#xff1a;访问控制列表 &#xff08;1&#xff09;通配符 当进行IP地址匹配的时候&#xff0c;后面会跟着32位掩码位&#xff0c;这32位称为通配符。 通配符&#xff0c;也是点分十进制格式&#xff0c;换算成二进制后&#xff0c;“0”表示“匹配…

速卖通揭秘:aliexpress.item_get API商品详情返回值全解析

速卖通&#xff08;AliExpress&#xff09;是阿里巴巴旗下的一个面向全球市场的B2C电商平台&#xff0c;为卖家提供了一个向全球消费者销售商品的平台。对于开发者来说&#xff0c;速卖通提供了API接口来方便地进行数据交互和集成。其中&#xff0c;item_get API是用于获取商品…

AI换脸原理(6)——人脸分割介绍

一、介绍 人脸分割是计算机视觉和图像处理领域的一项重要任务,它主要涉及到将图像中的人脸区域从背景或其他非人脸区域中分离出来。这一技术具有广泛的应用场景,如人脸识别、图像编辑、虚拟背景替换等。 在计算机视觉(CV)领域,经典的分割技术可以主要划分为三类:语义分…