【python数据分析基础】—pandas透视表和交叉表

目录

  • 前言
  • 一、pivot_table 透视表
  • 二、crosstab 交叉表
  • 三、实际应用


前言

透视表是excel和其他数据分析软件中一种常见的数据汇总工具。它是根据一个或多个键对数据进行聚合,并根据行和列上的分组键将数据分配到各个矩形区域中。


一、pivot_table 透视表

pivot_table()默认显示指定索引列和所有数值列。

语法:

pivot_table(data: ‘DataFrame’, values=None, index=None, columns=None, aggfunc: ‘AggFuncType’ = ‘mean’, fill_value=None, margins: ‘bool’ = False, dropna: ‘bool’ = True, margins_name: ‘str’ = ‘All’, observed: ‘bool’ = False, sort: ‘bool’ = True)

参数解析:

  • data:dataframe数据框。
  • value:需要聚合的列的名称,可选。默认聚合所有数值列。
  • index:用于分组的列名或其他分组键,出现在结果透视表的行。
  • columns:用于分组的列名或其他分组键,出现在结果透视表的列。
  • aggfunc:聚合函数或函数列表,默认为"mean",可以是任何对groupby有效的函数。
  • fill_value:用于替换结果表中的缺失值。
  • margins:添加行/列小计和总计,默认为False。
  • dropna:不聚合所有值都为NA的列,默认为True。
  • margins_name:如果margins=True,设置添加行/列小计和总计的名称,默认为"All"。

举例:

以小费数据集为例,数据情况如下:

import pandas as pd
tips=pd.read_csv('F:\\pydata-book-2nd-edition\\examples\\tips.csv')
tips["tip_pct"]=tips["tip"]/tips["total_bill"] #添加一列小费比例tip_pct
tips.head(10)

在这里插入图片描述

tips.shape # (244, 8)
tips.columns

在这里插入图片描述

参数index:根据sex和smoker计算分组平均数。

#pivot_table的默认聚合类型:平均数
tips.pivot_table(index=['sex ','smoker'])

在这里插入图片描述

参数values和columns:只想聚合"tip_pct"和"size",根据"sex","day"分组,将"smoker"放到列上,"day"放到行上。

tips.pivot_table(['tip_pct','size'],index=['sex ','day'],columns='smoker')

在这里插入图片描述

参数margins:margins=True 添加分项小计,这将会添加标签为all的行和列,其值对应单个等级中所有数据的分组统计,all值为平均值。

tips.pivot_table(['tip_pct','size'],index=['sex ','day'],columns='smoker',margins=True)

在这里插入图片描述

参数aggfunc:要使用其他的聚合函数,将其传给aggfunc即可,用len或count可以得到有关分组大小的交叉表。

tips.pivot_table('tip_pct',index=['sex ','smoker'],columns='day',aggfunc=len,margins=True)

在这里插入图片描述

参数fill_value:fill_value可以填补空值(NA)

tips.pivot_table('size',index=['time','sex ','smoker'],columns='day',aggfunc='sum',fill_value=0)

在这里插入图片描述


二、crosstab 交叉表

交叉表作为一种特殊的透视表,用于计算分组频率的特殊透视表。

语法:

crosstab(index, columns, values=None, rownames=None, colnames=None, aggfunc=None, margins: ‘bool’ = False, margins_name: ‘str’ = ‘All’, dropna: ‘bool’ = True, normalize=False)

参数解析:

  • index:接收string、数组、Series或数组list,表示行索引键,无默认。
  • columns:接收string、数组、Series或数组list,表示列索引键,无默认。
  • values:接收array,表示聚合数据,置信为None。
  • rownames:表示行分组键名,无默认。
  • colnames:表示列分组键名,无默认。
  • aggfunc:接收function,表示聚合函数,默认为None。
  • margins:布尔值,默认为True。表示汇总(total)功能的开关,设置为True后,结果集中会出现名为"ALL"的行和列。
  • margins_name:设置总计行(列)的名称(默认名称是“All”)
  • dropna:布尔值,表示是否对值进行标准化,默认为False。
  • normalize:布尔值,表示是否对值进行标准化,默认为False。

举例:

import numpy as np
data = pd.DataFrame({"Sample":np.arange(10),"Gender":np.random.choice(("Female","Male"),10),"Handedness":np.random.choice(("Right-handed","Left-handed"),10)})
data

在这里插入图片描述

根据性别和用手习惯对这段数据进行统计汇总。

import pandas as pd
pd.crosstab(data["Gender"],data["Handedness"],margins=True)

在这里插入图片描述


三、实际应用

示例1:数据聚合与分组实际应用

数据集情况:

import pandas as pd
fec=pd.read_csv('F:\\pydata-book-2nd-edition\\datasets\\fec\\P00000001-ALL.csv')
fec.shape #(1001731, 16)
fec.columns

在这里插入图片描述

fec.iloc[123456]

在这里插入图片描述

  • 分析1: 获取全部的候选人的名单
uniques_cands=fec.cand_nm.unique()
uniques_cands
uniques_cands[2]

在这里插入图片描述

  • 分析2: 补充党派信息

第一步:利用字典说明党派关系。

parties={'Bachmann, Michelle':'Republican','Romney, Mitt':'Republican', 'Obama, Barack':'Democrat',"Roemer, Charles E. 'Buddy' III":'Republican','Pawlenty, Timothy':'Republican','Johnson, Gary Earl':'Republican','Paul, Ron':'Republican', 'Santorum, Rick':'Republican','Cain, Herman':'Republican', 'Gingrich, Newt':'Republican','McCotter, Thaddeus G':'Republican','Huntsman, Jon':'Republican','Perry, Rick':'Republican'}

第二步:通过映射以及series对象的map方法,你可以根据候选人姓名得到一组党派信息,将其添加一个新列。

fec['party']=fec.cand_nm.map(parties)
fec['party'].value_counts()

在这里插入图片描述

数据集中“contb_receipt_amt”既包括退款也包括赞助,因此限定数据集只有正的出资额。

(fec["contb_receipt_amt"]>0).value_counts()

在这里插入图片描述

fec=fec[fec["contb_receipt_amt"]>0]
  • 分析3: 根据职业和雇主统计赞助信息

第一步:根据职业计算出资总额。

fec["contbr_occupation"].value_counts()[:10]

在这里插入图片描述

第二步:对职业信息、雇主信息进行映射。

occ_mapping={'INFORMATION REQUESTED':'NOT PROVIDED','INFORMATION REQUESTED PER BEST EFFORTS':'NOT PROVIDED','INFORMATION REQUESTED(BEST EFFORTS)':'NOT PROVIDED','C.E.O':'CEO'}#如果没有映射消息则返回x
f=lambda x:occ_mapping.get(x,x)
fec["contbr_occupation"]=fec["contbr_occupation"].map(f)
emp_mapping={'INFORMATION REQUESTED':'NOT PROVIDED','INFORMATION REQUESTED PER BEST EFFORTS':'NOT PROVIDED','SELF':'SELF-EMPLOYED','SELF EMPLOYED':'SELF-EMPLOYED'}f=lambda x:emp_mapping.get(x,x)
fec["contbr_employer"]=fec["contbr_employer"].map(f)

第三步:根据党派和职业对数据进行聚合,过滤掉总出资额不足200万美元的数据,生成透视表。

by_occupation = pd.pivot_table(fec,values='contb_receipt_amt',index='contbr_occupation',columns='party',aggfunc="sum")

第四步:生成柱状图

over_2mm = by_occupation[by_occupation.sum(1)>2000000]
over_2mm
over_2mm.plot(kind='barh')

在这里插入图片描述

  • 分析4: 总出资额最高的职业和企业

求最大值方法

def get_top_amounts(group,key,n=5):totals=group.groupby(key)['contb_receipt_amt'].sum()return totals.sort_values(ascending=False)[n:] #根据key对totals进行降序排列

根据职业和雇主进行聚合

fec_mrbo=fec[fec['cand_nm'].isin(['Obama, Barack','Romney, Mitt'])]grouped=fec_mrbo.groupby('cand_nm')grouped.apply(get_top_amounts,'contbr_occupation',n=7)#get_top_amounts函数的参数值

在这里插入图片描述

grouped.apply(get_top_amounts,'contbr_employer',n=10)

在这里插入图片描述

  • 分析5: 对出资额分组

第一步:利用cut函数根据出资额大小将数据离散到多个面元中。

bins=np.array([0,10,100,1000,10000,100000,1000000,10000000,100000000])
labels=pd.cut(fec_mrbo.contb_receipt_amt,bins)
labels

在这里插入图片描述

第二步:根据候选人的姓名以及面元标签对数据进行分组。

grouped=fec_mrbo.groupby(['cand_nm',labels])
grouped.size().unstack(0)

在这里插入图片描述

可以看到obama在小额赞助的数量比romney多得多。

第三步:对出资额求和并在面元内规格化,以便图形化显示两位候选人各种赞助额度的比例:

bucket_sums=grouped.contb_receipt_amt.sum().unstack(0)
bucket_sums

在这里插入图片描述

数据按行求频率如下:

normed_sums=bucket_sums.div(bucket_sums.sum(axis=1),axis=0)
normed_sums

在这里插入图片描述

两位候选人收到的各种捐赠额度的总额比例:

normed_sums[:-2].plot(kind='barh',stacked=True) #排除了两具最大的面元。

在这里插入图片描述

  • 分析6: 根据州统计赞助信息

第一步:根据候选人和州对数据进行聚合。

grouped=fec_mrbo.groupby(['cand_nm','contbr_st'])
totals=grouped.contb_receipt_amt.sum().unstack(0).fillna(0)
totals=totals[totals.sum(1)>100000]
totals[:10]

在这里插入图片描述

第二步:对各行除以总赞助额,就会得到各候选人在各州的总赞助额比例。

percent=totals.div(totals.sum(1),axis=0)
percent[:10]

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/681231.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微信公众号随心自定义商城源码系统 带完整的安装代码包以及安装部署教程

传统的微信商城模板化严重,无法满足企业的个性化需求。小编给大家分享一款随心自定义商城源码系统。该系统支持高度自定义,企业可以根据自身需求灵活调整商城页面、功能模块和运营策略,打造独具特色的微信商城。 以下是部分代码示例&#xf…

图片优化?imageView2/2/w/300/h/200

使用?imageView2/2/w/300/h/200在图片后面拼上去会使图片体积变小,加载速度优化; 例: 未使用: https://cdn.dev.scrm.juplus.cn/hzGkmfPH6Yep7nZFmFoo0j8Qf.jpg 使用后: https://cdn.dev.scrm.juplus.cn/hzGkmfPH6Yep7nZFmFo…

UE5材质基础(2)——数学节点篇1

UE5材质基础(2)——数学节点篇1 目录 UE5材质基础(2)——数学节点篇1 Add节点 Append节点 Abs节点 Subtract节点 Multiply节点 Divide节点 Clamp节点 Time节点 Lerp节点 Add节点 快捷键:A鼠标左键 值相加…

58. 【Android教程】音频录制:MediaRecord

在第 57 节我们使用 MediaPlayer 实现了一个 mp3 播放器,除了播放 Android 还提供了 MediaRecorder 用于录音。Android 设备基本都会有一个麦克风,通过 MediaRecorder 可以打开麦克风进行语音采集,这一节我们就来学习如何在 Android 系统上实…

燃气电力瓶装气行业入户安检小程序开发

我们开发的小区业主入户安检小程序,旨在满足燃气、电力以及其他需要入户安检的行业需求。该程序支持自定义安检项目,实现线下实地安检与线上数据保存的完美结合。在安检过程中,我们可以拍照或录像,以确保安检的透明性和可追溯性&a…

CTF 竞赛训练题

1.N种方法解决 发现文件头后面有个base64 解码出来提示是png了,那把它解码之后的数据转成图片: 扫码得到flag。 2.大白 根据提示和大佬的wp得知是修改了文件的高度,因此还原文件高度就行。 这里把1图片用winhex打开: 这里放一下…

latex algorithm2e 库学习总结

案例1 \documentclass{article}\usepackage{xeCJK} \usepackage[]{algorithm2e} %\usepackage{ctex} % 中文包\begin{document}\renewcommand{\algorithmcfname}{算法} % 把标题设置为“算法” \begin{algorithm…

自动镭雕机价格是多少?

自动镭雕机是一种高精度、高效率的激光雕刻设备,广泛应用于手机、电脑、玻璃等产品表面的图案雕刻。那么,自动镭雕机多少钱一台呢?本文将为您详细解析各种因素对自动镭雕机价格的影响。 一、影响自动镭雕机价格的因素 1. 品牌和质量 自动镭…

【优选算法】——Leetcode——LCR 179. 查找总价格为目标值的两个商品

1.题目 2. 解法⼀(暴⼒解法,会超时): 1.算法思路: 2.图解 3. 代码实现 3. 解法⼆(双指针-对撞指针): 1.算法思路: 2.图解 3.代码实现 1.C语言 2…

Vuex 和 Pinia 两个状态管理模式的区别

Pinia和Vuex一样都是是vue的全局状态管理器。其实Pinia就是Vuex5,只不过为了尊重原作者的贡献就沿用了这个看起来很甜的名字Pinia。(实际项目中千万不要即用Vuex又用Pinia,不然你会被同事‘’请去喝茶的‘’。 一、安装(常用命令安…

mysql其它补充

exist和in的区别 exists 用于对外表记录做筛选。 exists 会遍历外表,将外查询表的每一行,代入内查询进行判断。 当 exists 里的条件语句能够返回记录行时,条件就为真,返回外表当前记录。反之如果 exists 里的条件语句不能返回记…

【数据结构与算法】力扣 226. 翻转二叉树

题目描述 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点。 示例 1: 输入: root [4,2,7,1,3,6,9] 输出: [4,7,2,9,6,3,1]示例 2: 输入: root [2,1,3] 输出: [2,3,1…