深入浅出:ConcurrentLinkedQueue源码分析与实战

哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云;欢迎大家常来逛逛

  今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一个人虽可以走的更快,但一群人可以走的更远。

  我是一名后端开发爱好者,工作日常接触到最多的就是Java语言啦,所以我都尽量抽业余时间把自己所学到所会的,通过文章的形式进行输出,希望以这种方式帮助到更多的初学者或者想入门的小伙伴们,同时也能对自己的技术进行沉淀,加以复盘,查缺补漏。

小伙伴们在批阅的过程中,如果觉得文章不错,欢迎点赞、收藏、关注哦。三连即是对作者我写作道路上最好的鼓励与支持!

前言

  在多线程编程中,由于线程之间的竞争,导致多线程访问数据时容易出现数据不一致的问题,为了解决这个问题,Java提供了一些线程安全的数据结构,其中之一就是ConcurrentLinkedQueue,它是一个非阻塞的线程安全队列。

摘要

  本文主要介绍ConcurrentLinkedQueue的源代码解析、应用场景案例、优缺点分析、类代码方法介绍以及测试用例。

ConcurrentLinkedQueue

简介

  ConcurrentLinkedQueue是一个线程安全的队列,它的特点是非阻塞,也就是说当队列为空时,出队操作不会阻塞线程,而是立即返回null。同时,它也不允许插入null元素。

  ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列。它采用了先进先出的原则,对于并发访问,它采取了一种无锁算法(lock-free),实现了高效率的并发操作。它通过CAS操作实现了“原子操作”,保证了线程安全。

源代码解析

  ConcurrentLinkedQueue的源代码中,最重要的是Node类和head、tail两个节点。每个节点代表队列中的一个元素,节点中除了存储元素外,还包含了指向下一个节点的指针。

private static class Node<E> {volatile E item;volatile Node<E> next;Node(E item) {UNSAFE.putObject(this, itemOffset, item);}boolean casItem(E cmp, E val) {return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);}void lazySetNext(Node<E> val) {UNSAFE.putOrderedObject(this, nextOffset, val);}boolean casNext(Node<E> cmp, Node<E> val) {return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);}private static final sun.misc.Unsafe UNSAFE;private static final long itemOffset;private static final long nextOffset;static {try {UNSAFE = sun.misc.Unsafe.getUnsafe();Class<?> k = Node.class;itemOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("item"));nextOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("next"));} catch (Exception e) {throw new Error(e);}}
}

  在队列中head和tail是两个Node节点,其中head代表队列中最先入队的元素,tail代表队列中最后入队的元素。head和tail节点中的next指针指向队列中的下一个元素,通过这样的方式将整个队列串起来,实现了队列的操作。

在这里插入图片描述

public class ConcurrentLinkedQueue<E> extends AbstractQueue<E>implements Queue<E>, java.io.Serializable {private transient volatile Node<E> head;private transient volatile Node<E> tail;public ConcurrentLinkedQueue() {head = tail = new Node<E>(null);}private void updateHead(Node<E> h, Node<E> p) {if (h != p && casHead(h, p))h.lazySetNext(h);}private void updateTail(Node<E> t, Node<E> p) {if (t != p && casTail(t, p))t.lazySetNext(p);}boolean casHead(Node<E> cmp, Node<E> val) {return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);}boolean casTail(Node<E> cmp, Node<E> val) {return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);}private static final sun.misc.Unsafe UNSAFE;private static final long headOffset;private static final long tailOffset;static {try {UNSAFE = sun.misc.Unsafe.getUnsafe();Class<?> k = ConcurrentLinkedQueue.class;headOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("head"));tailOffset = UNSAFE.objectFieldOffset(k.getDeclaredField("tail"));} catch (Exception e) {throw new Error(e);}}
}

应用场景案例

  ConcurrentLinkedQueue的应用场景很广泛,它可以作为多线程环境下的任务队列,也可以作为消息队列、日志队列等。下面以一个简单的任务队列为例进行说明。

public class TaskQueue {private ConcurrentLinkedQueue<Task> queue;public TaskQueue() {queue = new ConcurrentLinkedQueue<>();}public void addTask(Task task) {queue.offer(task);}public void executeTasks() {if (queue.isEmpty()) {return;}Task task = null;while ((task = queue.poll()) != null) {task.execute();}}
}

  在上述代码中,我们定义了一个TaskQueue类,它包含了一个ConcurrentLinkedQueue对象,用于存储任务。addTask()方法用于向队列中添加任务,executeTasks()方法用于执行队列中的任务。当队列为空时,直接返回。否则,使用poll()方法从队列中取出一个任务执行,直到队列中的任务全部被执行完成。

优缺点分析

优点

  • 高并发性:ConcurrentLinkedQueue的实现采用了无锁算法,相比于同步队列的加锁操作,它在高并发场景下的性能更优;
  • 无阻塞:当队列为空时,出队操作不会阻塞线程,而是立即返回null;
  • 线程安全:ConcurrentLinkedQueue是线程安全的,不需要我们手动进行同步。

缺点

  • 不支持随机访问:由于ConcurrentLinkedQueue是基于链表实现的,所以它不支持随机访问操作,只能从队头或队尾进行插入、删除和访问操作。如果应用场景中需要随机访问,建议使用其他数据结构;
  • 不支持元素排序:ConcurrentLinkedQueue是一个队列,它不支持对元素进行排序。如果应用场景中需要对元素排序,建议使用其他数据结构。

类代码方法介绍

offer(E e)

  插入指定元素作为此队列的末尾(最后一个元素)。如果队列为空,则插入位于队头(第一个元素)。

public boolean offer(E e) {checkNotNull(e);final Node<E> newNode = new Node<E>(e);for (Node<E> t = tail, p = t;;) {Node<E> q = p.next;if (q == null) {if (p.casNext(null, newNode)) {if (p != t)casTail(t, newNode);  // Failure is OK.return true;}} else if (p == q)p = (t != (t = tail)) ? t : head;elsep = (p != t && t != (t = tail)) ? t : q;}
}

poll()

获取并移除此队列的头。

public E poll() {restartFromHead:for (;;) {for (Node<E> h = head, p = h, q;;) {E item = p.item;if (item != null && p.casItem(item, null)) {if (p != h) // Hop two nodes at a timeupdateHead(h, ((q = p.next) != null) ? q : p);return item;}else if ((q = p.next) == null) {updateHead(h, p);return null;}else if (p == q)continue restartFromHead;elsep = q;}}
}

size()

返回队列中的元素数量。

public int size() {int count = 0;for (Node<E> p = first(); p != null; p = succ(p))if (p.item != null)++count;return count;
}

isEmpty()

判断队列是否为空。

public boolean isEmpty() {return first() == null;
}

contains(Object o)

判断队列中是否包含指定元素。

public boolean contains(Object o) {if (o == null) return false;for (Node<E> p = first(); p != null; p = succ(p)) {E item = p.item;if (item != null && o.equals(item))return true;}return false;
}

add(E e)

插入指定元素作为此队列的末尾。与offer()方法相同。

public boolean add(E e) {return offer(e);
}

remove()

获取并移除此队列的头。与poll()方法相同。

public E remove() {E x = poll();if (x != null)return x;elsethrow new NoSuchElementException();
}

element()

获取但不移除此队列的头。与peek()方法相同。

public E element() {E x = peek();if (x != null)return x;elsethrow new NoSuchElementException();
}

测试用例

  我们可以编写如下测试用例来验证ConcurrentLinkedQueue的正确性。

测试代码

  下面是一个简单的示例代码,使用了ConcurrentLinkedQueue创建了一个线程安全的队列,并对其进行了读写测试:

package com.example.javase.collection;import java.util.concurrent.ConcurrentLinkedQueue;/*** @Author ms* @Date 2023-10-22 18:57*/
public class ConcurrentLinkedQueueTest {public static void main(String[] args) {ConcurrentLinkedQueue<String> queue = new ConcurrentLinkedQueue<>();// 添加元素queue.offer("Java");queue.offer("Python");queue.offer("C++");// 输出队列元素System.out.println("Queue elements: " + queue);// 获取并移除队列头部元素String headElement = queue.poll();System.out.println("Head element: " + headElement);// 输出队列元素System.out.println("Queue elements after polling: " + queue);// 获取队列头部元素String peekElement = queue.peek();System.out.println("Peek element: " + peekElement);// 输出队列元素System.out.println("Queue elements after peeking: " + queue);}
}

期望输出结果如下:

Queue elements: [Java, Python, C++]
Head element: Java
Queue elements after polling: [Python, C++]
Peek element: Python
Queue elements after peeking: [Python, C++]

  接下来我们可以在本地执行一下这个测试用例,以作为检验是否能够将其预期结果正确输出。

测试结果

  根据如上测试用例,本地测试结果如下,仅供参考,你们也可以自行修改测试用例或者添加更多的测试数据或测试方法,进行熟练学习以此加深理解。

在这里插入图片描述
如上测试用例执行后,经肉眼验证与预期结果是一致!

测试代码分析

  根据如上测试用例,在此我给大家进行深入详细的解读一下测试代码,以便于更多的同学能够理解并加深印象。
  如上代码是一个使用ConcurrentLinkedQueue实现的队列的示例代码。ConcurrentLinkedQueue是一个线程安全的无界队列,它采用了无锁算法来实现高效的并发操作。在该示例中,首先创建了一个ConcurrentLinkedQueue对象,并通过调用offer()方法向队列中添加了3个元素。然后,分别演示了poll()方法和peek()方法的使用,它们分别用于获取并移除队列头部元素和获取队列头部元素,最终输出了操作后的队列元素。

小结

  ConcurrentLinkedQueue是一个线程安全的队列,它采用了先进先出的原则,对于并发访问,它采取了一种无锁算法(lock-free),实现了高效率的并发操作。它通过CAS操作实现了“原子操作”,保证了线程安全。

  ConcurrentLinkedQueue的应用场景很广泛,它可以作为多线程环境下的任务队列,也可以作为消息队列、日志队列等。

总结

  1. ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列;
  2. 支持先进先出原则,采用无锁算法实现高效的并发操作;
  3. 不支持随机访问和元素排序;
  4. 适用于多线程环境下的任务队列、消息队列等;
  5. 具有高并发性、无阻塞、线程安全等优点。

… …

文末

好啦,以上就是我这期的全部内容,如果有任何疑问,欢迎下方留言哦,咱们下期见。

… …

学习不分先后,知识不分多少;事无巨细,当以虚心求教;三人行,必有我师焉!!!

wished for you successed !!!


⭐️若喜欢我,就请关注我叭。

⭐️若对您有用,就请点赞叭。

⭐️若有疑问,就请评论留言告诉我叭。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/697036.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文本分类的深度注意图扩散网络 笔记

1 Title Deep Attention Diffusion Graph Neural Networks for Text Classification&#xff08;Yonghao Liu、Renchu Guan、Fausto Giunchiglia、Yanchun Liang、Xiaoyue Feng&#xff09;【EMnlp 2021】 2 Conclusion Text classification is a fundamental task with broad…

基于SpringBoot + MySQL的宠物医院管理系统设计与实现+毕业论文+指导搭建视频

系统介绍 项目的使用者可以避免排队挂号&#xff0c;比较方便&#xff0c;也方便于宠物医院的管理。现在的宠物本系统根据华阳社区宠物医院管理工作流程将系统使用者划分为三类&#xff0c;分别为、宠物医生、宠物主人以及系统管理人员&#xff0c;以下是对该三类类用户的具体…

大模型微调方法汇总

微调方法 Freeze方法P-tuning方法 prefix-tuningPrompt TuningP-tuning v1P-tuning v2Lora方法 重要相关参数LoRA 的优势Qlora方法 相关参数微调经验 模型选择模型大小选择数据处理微调方案英文模型需要做词表扩充吗&#xff1f;如何避免灾难遗忘大模型的幻觉问题微调后的输出…

人脸消费给传统食堂带来的变化

消费的技术基础是脸部识别&#xff0c;脸部识别是基于人的容貌特征信息进行认证的生物特征识别技术&#xff0c;其突出的特征是以非接触方式进行识别&#xff0c;避免个人信息的泄露。 面部识别和指纹识别、掌纹识别、视网膜识别、骨骼识别、心率识别等都是人体生物特征识别技术…

408数据结构-哈夫曼树 自学知识点整理

前置知识&#xff1a;二叉树的概念、性质与存储结构 哈夫曼树 哈夫曼树的定义 首先需要明确几个概念。 路径&#xff1a;从树中的一个结点到另一个结点之间的分支构成这两个结点之间的路径。 路径长度&#xff1a;路径上的分支数目称为路径长度。 权(值)&#xff1a;树中结点…

【论文精读】| KBS2023-TMBL-多模态情感分析系列文章解读

TMBL: Transformer-based multimodal binding learning model for multimodal sentiment analysis 一. KBS2023-TMBL-用于多模态情感分析的极向量和强度向量混合器模型1 Abstract1.1 Motivation1.2 Method1.3 Results 2. Related Work2.1 情感分析2.1 基于transformer的2.1 模态…

基于Echarts的大数据可视化模板:服务器运营监控

目录 引言背景介绍研究现状与相关工作服务器运营监控技术综述服务器运营监控概述监控指标与数据采集可视化界面设计与实现数据存储与查询优化Echarts与大数据可视化Echarts库以及其在大数据可视化领域的应用优势开发过程和所选设计方案模板如何满足管理的特定需求模板功能与特性…

基于Java的qq截图工具参考论文(论文 + 源码)

【免费】基于Java的qq截图工具.zip资源-CSDN文库https://download.csdn.net/download/JW_559/89304179 基于Java的qq截图工具 摘要 当今时代是飞速发展的信息时代&#xff0c;人们在对信息的处理中对图像的处理量与日俱增&#xff0c;这一点在文档人员上显得非常突出。 本软…

将mongo查出的数据导出来,变成json,然后转Excel

在MongoDB shell或使用命令行工具&#xff08;如mongo或mongosh&#xff09;中&#xff0c;你可以将查询结果输出到JSON文件。以下是一个示例命令&#xff0c;它执行上述聚合查询并将结果写入名为output.json的文件&#xff1a; mongo your_database_name --quiet --eval db.u…

【qt】数值的输入与输出

数值的输入与输出 一.与c中的输入与输出的区别二.QString转数值三.数值转QString1.number()2.asprintf() 四.小项目1.总价和进制2.QSpinBox代替3.QSlider滑动块4.QScrollBar滚动条5.QDial表盘6.QLcdnumber lcd显示 五.总结一下下 一.与c中的输入与输出的区别 在c中我们一般通过…

【每日刷题】Day39

【每日刷题】Day39 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 622. 设计循环队列 - 力扣&#xff08;LeetCode&#xff09; 2. 387. 字符串中的第一个唯一字符 - …

实训七:实现用户管理功能

1.题目 实现用户管理功能。 2.目的 (1)理解Node.js程序的基本原理。 (2)掌握利用Node.js建立服务器程序的基本方法。 (3)理解Ajax的工作原理。 (4)掌握编写Ajax程序的基本方法。 (5)会利用所学知识设计简单的应用程序。 3.内容 设计程序能够对用户进行管理&#xff0c;实现查询…