HNU-算法设计与分析-作业6

第六次作业【分支限界法】

在这里插入图片描述

文章目录

    • 第六次作业【分支限界法】
      • <1> 算法实现题6-2 最小权顶点覆盖问题
      • <2> 算法实现题6-6 n后问题
      • <3> 算法实现题6-7 布线问题

<1> 算法实现题6-2 最小权顶点覆盖问题

▲问题重述

问题描述:
给定一个赋权无向图 G=(V,E),每个顶点 v∈V 都有一个权值 w(v)。如果 U⊆VU⊆V,且对任意(u,v)∈E 有 u∈U 或 v∈U,就称 U 为图 G 的一个顶点覆盖。G 的最小权顶点覆盖是指 G 中所含顶点权之和最小的顶点覆盖。

算法设计:
对于给定的无向图 G,设计一个优先队列式分支限界法,计算 G 的最小权顶点覆盖。

数据输入:
由文件input.txt给出输入数据。第 1 行有 2 个正整数 n 和 m,表示给定的图 G 有 n 个顶点和 m 条边,顶点编号为 1,2,…,n。第 2 行有 n 个正整数表示 n 个顶点的权。接下来 的 m 行中,每行有 2 个正整数 u,v,表示图 G 的一条边(u,v)。

结果输出:
将计算的最小权顶点覆盖的顶点权之和以及最优解输出到文件output.txt。文件的第1行是最小权顶点覆盖顶点权之和;第2行是最优解xi(1<=i<=n),xi=0表示顶点i不在最小权顶点覆盖中,xi=1表示顶点i在最小权顶点覆盖中。

输入文件示例
input.txt
7 7
1 100 1 1 1 100 10
1 6
2 4
2 5
3 6
4 5
4 6
6 7输出文件示例
output.txt
13
1 0 1 0 1 0 1

▲解题思路

  1. 定义一个最小堆 MinHeap 类,用于实现堆操作。
  2. HeapNode 类表示图中的一个顶点。DealNode 类包含一些操作,主要是用于处理堆中结点的操作。
  3. DealNode::BBVC() 方法是该算法的核心部分。通过不断地加入和不加入某个顶点,并通过堆来遍历所有可能的情况,找到图的最小顶点覆盖。
  4. MinCover 函数是对 DealNode::BBVC() 方法的封装,用于获取最终的最小顶点覆盖权重。
  5. main 函数中,用户输入了图的顶点数 vertexNum 和边数 edgeNum。然后输入每个顶点的权值,并通过边的信息构建了图的邻接矩阵。
  6. 调用 MinCover 函数得到最小顶点覆盖权重,并输出结果。

▲代码

#include <fstream>
#include <iostream>
using namespace std;template <class Type>
class MinHeap // 最小堆类;
{
public:MinHeap(Type a[], int n);   // 带两参数的构造函数,在此程序中没有应用;MinHeap(int ms);            // 构造函数重载,只初始化堆的大小,对堆中结点不初始化;另外,堆元素的存储是以数组~MinHeap();                 // 形式,且无父、子指针,访问父亲结点,利用数组标号进行;bool Insert(const Type &x); // 插入堆中一个元素;bool RemoveMin(Type &x);    // 删除堆顶最小结点;void MakeEmpty();           // 使堆为空bool IsEmpty();bool IsFull();int Size();protected:void FilterDown(const int start, const int endOfHeap); // 自顶向下构造堆void FilterUp(const int start);                        // 自底向上构造堆
private:Type *heap;int maxSize;const int defaultSize;int currentSize; // 堆当前结点个数大小
};template <class Type>
MinHeap<Type>::MinHeap(int ms) : defaultSize(100)
{maxSize = (ms > defaultSize) ? ms : defaultSize;heap = new Type[maxSize];currentSize = 0;
}template <class Type>
MinHeap<Type>::MinHeap(Type a[], int n) : defaultSize(100)
{maxSize = (n > defaultSize) ? n : defaultSize;heap = new Type[maxSize];currentSize = n;for (int i = 0; i < n; i++)heap[i] = a[i];int curPos = (currentSize - 2) / 2;while (curPos >= 0){FilterDown(curPos, currentSize - 1);curPos--;}
}template <class Type>
MinHeap<Type>::~MinHeap()
{delete[] heap;
}template <class Type>
void MinHeap<Type>::FilterDown(const int start, const int endOfHeap)
{int i = start, j = i * 2 + 1;Type temp = heap[i];while (j <= endOfHeap){if (j < endOfHeap && heap[j] > heap[j + 1])j++;if (temp < heap[j])break;else{heap[i] = heap[j];i = j;j = 2 * i + 1;}}heap[i] = temp;
}template <class Type>
void MinHeap<Type>::FilterUp(const int start)
{int i = start, j = (i - 1) / 2;Type temp = heap[i];while (i > 0){if (temp >= heap[j])break;else{heap[i] = heap[j];i = j;j = (i - 1) / 2;}}heap[i] = temp;
}template <class Type>
bool MinHeap<Type>::RemoveMin(Type &x)
{if (IsEmpty()){cerr << "Heap empty!" << endl;return false;}x = heap[0];heap[0] = heap[currentSize - 1];currentSize--;FilterDown(0, currentSize - 1);return true;
}template <class Type>
bool MinHeap<Type>::Insert(const Type &x)
{if (IsFull()){cerr << "Heap Full!" << endl;return false;}heap[currentSize] = x;FilterUp(currentSize);currentSize++;return true;
}template <class Type>
bool MinHeap<Type>::IsEmpty()
{return currentSize == 0;
}template <class Type>
bool MinHeap<Type>::IsFull()
{return currentSize == maxSize;
}template <class Type>
void MinHeap<Type>::MakeEmpty()
{currentSize = 0;
}template <class Type>
int MinHeap<Type>::Size()
{return currentSize;
}// 最小堆结点
class HeapNode // 堆结点类;
{friend class DealNode;public:operator int() const { return cn; }private:int i,  // i标示堆中结点号cn, // cn标示当前加入的覆盖顶点中权重之和*x, // x数组标示那些顶点加入了覆盖顶点的行列*c; // c数组标示X中的覆盖顶点中所有的邻接顶点
};// VC类用来对堆中结点内部的的操作
class DealNode
{friend int MinCover(int **, int[], int);private:void BBVC();bool cover(HeapNode E);void AddLiveNode(MinHeap<HeapNode> &H, HeapNode E, int cn, int i, bool ch);int **a, n, *w, *bestx, bestn;
};void DealNode::BBVC()
{// 建立初始空堆MinHeap<HeapNode> H(1000);HeapNode E;E.x = new int[n + 1];E.c = new int[n + 1];for (int j = 1; j <= n; j++){E.x[j] = E.c[j] = 0;}int i = 1, cn = 0;while (true){if (i > n){if (cover(E)){for (int j = 1; j <= n; j++)bestx[j] = E.x[j];bestn = cn;break;}}else{if (!cover(E))AddLiveNode(H, E, cn, i, true); // 加入结点标号为i 的结点到顶点覆盖集中,并把更新后的结点再插入堆中AddLiveNode(H, E, cn, i, false);    // 不把结点标号为 i 的结点加入到顶点覆盖集中,并把更新后的结点插入堆中}if (H.IsEmpty())break;H.RemoveMin(E); // 取堆顶点赋给Ecn = E.cn;i = E.i + 1;}
}// 检测图是否被覆盖
bool DealNode::cover(HeapNode E)
{for (int j = 1; j <= n; j++){if (E.x[j] == 0 && E.c[j] == 0) // 存在任意一条边的两个顶点都为0的情况下,为未覆盖情况return false;               // X[j]记录覆盖顶点,c[j]记录与覆盖顶点相连的顶点 0表征未覆盖,1表征已覆盖}return true;
}void DealNode::AddLiveNode(MinHeap<HeapNode> &H, HeapNode E, int cn, int i, bool ch)
{HeapNode N;N.x = new int[n + 1];N.c = new int[n + 1];for (int j = 1; j <= n; j++){N.x[j] = E.x[j];N.c[j] = E.c[j];}N.x[i] = ch ? 1 : 0;if (ch){N.cn = cn + w[i]; // 记录i顶点是否加入覆盖的行列中;for (int j = 1; j <= n; j++)if (a[i][j] > 0) // 如果i,j相邻,刚把j顶点加入覆盖邻接顶点集中;N.c[j]++;}else{N.cn = cn;}N.i = i;H.Insert(N); // 插入堆中
}int MinCover(int **a, int v[], int n)
{DealNode Y;Y.w = new int[n + 1];for (int j = 1; j <= n; j++){Y.w[j] = v[j]; // 初始化DealNode类对象Y;}Y.a = a;Y.n = n;Y.bestx = v; // 将地址赋予bestx,Y.BBVC();return Y.bestn; // bestn是最后的最小顶点覆盖集权重;
}int main()
{int startV, endV;       // 一条边的起始节点,终止节点int vertexNum, edgeNum; // 顶点数,边数int i;cin >> vertexNum >> edgeNum;int **a; // 图的邻接矩阵表示,1表示有边a = new int *[vertexNum + 1];for (int k = 0; k <= vertexNum; k++)a[k] = new int[vertexNum + 1];for (int i = 0; i <= vertexNum; i++)for (int j = 0; j <= vertexNum; j++)a[i][i] = 0;int *p; // 顶点的权值数组p = new int[vertexNum + 1];for (i = 1; i <= vertexNum; i++)cin >> p[i];for (i = 1; i <= edgeNum; i++){cin >> startV >> endV;a[startV][endV] = 1;a[endV][startV] = 1;}int minVertex = MinCover(a, p, vertexNum);cout << minVertex << endl;for (i = 1; i <= vertexNum; i++){cout << p[i] << " ";}cout << endl;return 0;
}

▲验证

在这里插入图片描述

<2> 算法实现题6-6 n后问题

▲问题重述

设计一个解n后问题的队列式分支限界法,计算在n × n n\times nn×n个方格上放置彼此不受攻击的n个皇后的一个放置方案。
案例

input
5
output
1 3 5 2 4

▲解题思路

  1. 定义一个结构体node,表示棋盘上的每一个可能的位置,以及记录了当前状态的一些信息,如列、左右对角线等的占用情况。
  2. 使用优先队列priority_queue来存储搜索过程中的状态,按照结构体中的x值进行排序。这里的x表示当前放置的皇后所在的行数。
  3. 在主循环中,初始化棋盘的初始状态,将第一行的每一个位置作为起点,生成相应的初始状态,并加入优先队列中。
  4. 进入主循环,每次从优先队列中取出一个状态,判断是否达到了目标状态(即放置了所有皇后),如果是则输出解,并结束程序(因为只需要找到一个可行解即可)。
  5. 如果当前状态不是目标状态,继续在下一行尝试放置皇后。遍历每一列,对于每一个可行的位置,生成新的状态并加入优先队列中。
  6. 在生成新状态时,进行剪枝操作,检查当前位置是否与之前的皇后冲突,如果冲突则跳过该位置。
  7. 重复以上步骤,直到找到一个解或者队列为空。由于采用优先队列,搜索时会先尝试最有希望的位置,加速找到解的过程。

▲代码

#include <bits/stdc++.h>
using namespace std;
#define N 100
int n;
struct node
{int vis[N] = {0}, col[N] = {0}, lr[N] = {0}, rl[N] = {0};int x, y;node(int a, int b) : x(a), y(b) {}bool operator<(const node &a) const{return x < a.x;}
};
priority_queue<node> q;
int main()
{cin >> n;for (int i = 0; i < n; i++){node temp = node(0, i);temp.vis[0] = i + 1;temp.col[i] = 1;temp.rl[temp.x + temp.y] = 1;temp.lr[50 + temp.x - temp.y] = 1;q.push(temp);}while (!q.empty()){node temp = q.top();q.pop();if (temp.x == n - 1){for (int i = 0; i < n; i++){cout << temp.vis[i] << " ";}cout << endl;break; // 只需要给出一个答案即可}if (temp.x < n - 1){for (int i = 0; i < n; i++){node next = node(temp.x + 1, i);if (temp.col[next.y] || temp.lr[50 + next.x - next.y] || temp.rl[next.x + next.y]){ // 剪枝continue;}for (int i = 0; i < N; i++){next.lr[i] = temp.lr[i];next.rl[i] = temp.rl[i];next.col[i] = temp.col[i];}next.col[next.y] = 1;next.lr[50 + next.x - next.y] = 1;next.rl[next.x + next.y] = 1;for (int i = 0; i < next.x; i++){next.vis[i] = temp.vis[i];}next.vis[next.x] = i + 1;q.push(next);}}}return 0;
}

▲验证

验证了n=5,10,15三种情况。

在这里插入图片描述

<3> 算法实现题6-7 布线问题

▲问题重述

在这里插入图片描述

▲解题思路

  1. MinHeap 类定义了最小堆,用于存储待处理的状态。该堆的元素是 BoardNode 类型的对象。
  2. BoardNode 类表示电路板的一种摆放方式,包含了一些必要的信息。len 方法用于计算电路板摆放的长度。
  3. BBArrangeBoards 函数是基于分支限界法的核心算法。它通过不断生成摆放状态,使用最小堆来搜索可能的最优解。HeapSize 为堆的大小。
  4. Make2DArray 函数用于动态创建二维数组。
  5. main 函数中,用户输入了电路板数量 n。通过 Make2DArray 创建了二维数组 B,表示电路板之间的连接关系。然后调用 BBArrangeBoards 函数求解问题,并输出最小长度和对应的摆放方式。

▲代码

#include <array>
#include <bits/stdc++.h>
#include <queue>
using namespace std;
int n, *p;
template <class Type>
class MinHeap // 最小堆类;
{
public:MinHeap(Type a[], int n);   // 带两参数的构造函数,在此程序中没有应用;MinHeap(int ms);            // 构造函数重载,只初始化堆的大小,对堆中结点不初始化;另外,堆元素的存储是以数组~MinHeap();                 // 形式,且无父、子指针,访问父亲结点,利用数组标号进行;bool Insert(const Type &x); // 插入堆中一个元素;bool RemoveMin(Type &x);    // 删除堆顶最小结点;void MakeEmpty();           // 使堆为空bool IsEmpty();bool IsFull();int Size();protected:void FilterDown(const int start, const int endOfHeap); // 自顶向下构造堆void FilterUp(const int start);                        // 自底向上构造堆
private:Type *heap;int maxSize;const int defaultSize;int currentSize; // 堆当前结点个数大小
};template <class Type>
MinHeap<Type>::MinHeap(int ms) : defaultSize(100)
{maxSize = (ms > defaultSize) ? ms : defaultSize;heap = new Type[maxSize];currentSize = 0;
}template <class Type>
MinHeap<Type>::MinHeap(Type a[], int n) : defaultSize(100)
{maxSize = (n > defaultSize) ? n : defaultSize;heap = new Type[maxSize];currentSize = n;for (int i = 0; i < n; i++)heap[i] = a[i];int curPos = (currentSize - 2) / 2;while (curPos >= 0){FilterDown(curPos, currentSize - 1);curPos--;}
}template <class Type>
MinHeap<Type>::~MinHeap()
{delete[] heap;
}template <class Type>
void MinHeap<Type>::FilterDown(const int start, const int endOfHeap)
{int i = start, j = i * 2 + 1;Type temp = heap[i];while (j <= endOfHeap){if (j < endOfHeap && heap[j] > heap[j + 1])j++;if (temp < heap[j])break;else{heap[i] = heap[j];i = j;j = 2 * i + 1;}}heap[i] = temp;
}template <class Type>
void MinHeap<Type>::FilterUp(const int start)
{int i = start, j = (i - 1) / 2;Type temp = heap[i];while (i > 0){if (temp >= heap[j])break;else{heap[i] = heap[j];i = j;j = (i - 1) / 2;}}heap[i] = temp;
}template <class Type>
bool MinHeap<Type>::RemoveMin(Type &x)
{if (IsEmpty()){cerr << "Heap empty!" << endl;return false;}x = heap[0];heap[0] = heap[currentSize - 1];currentSize--;FilterDown(0, currentSize - 1);return true;
}template <class Type>
bool MinHeap<Type>::Insert(const Type &x)
{if (IsFull()){cerr << "Heap Full!" << endl;return false;}heap[currentSize] = x;FilterUp(currentSize);currentSize++;return true;
}template <class Type>
bool MinHeap<Type>::IsEmpty()
{return currentSize == 0;
}template <class Type>
bool MinHeap<Type>::IsFull()
{return currentSize == maxSize;
}template <class Type>
void MinHeap<Type>::MakeEmpty()
{currentSize = 0;
}template <class Type>
int MinHeap<Type>::Size()
{return currentSize;
}class BoardNode
{friend int BBArrangeBoards(int **, int, int *&);public:operator int() const { return cd; }int len(int **, int ii);private:int *x, s, cd;
};int BoardNode::len(int **conn, int ii)
{int sum = 0;for (int i = 1, sum = 0; i <= ii; i++){for (int j = i + 1; j <= ii; j++){int dist = x[i] > x[j] ? x[i] - x[j] : x[j] - x[i];sum += conn[i][j] * dist;}}return sum;
}int BBArrangeBoards(int **conn, int n, int *&bestx)
{int HeapSize = 10;MinHeap<BoardNode>H(HeapSize);BoardNode E;E.x = new int[n + 1];E.s = 0;E.cd = 0;for (int i = 1; i <= n; i++)E.x[i] = i;int bestd = INT_MAX;bestx = 0;while (E.cd < bestd){if (E.s == n - 1){int ld = E.len(conn, n);if (ld < bestd){delete[] bestx;bestx = E.x;bestd = ld;}elsedelete[] E.x;}else{for (int i = E.s + 1; i <= n; i++){BoardNode N;N.x = new int[n + 1];N.s = E.s + 1;for (int j = 1; j <= n; j++)N.x[j] = E.x[j];N.x[N.s] = E.x[i];N.x[i] = E.x[N.s];N.cd = N.len(conn, N.s);if (N.cd < bestd)H.Insert(N);elsedelete[] N.x;}}delete[] E.x;}try{H.RemoveMin(E);}catch (...){return bestd;}while (true){delete[] E.x;try{H.RemoveMin(E);}catch (...){break;}}return bestd;
}template <class T>
void Make2DArray(T **&x, int rows, int cols)
{x = new T *[rows];for (int i = 0; i < rows; ++i){x[i] = new T[cols];}
}int main()
{cin >> n;p = new int[n + 1];int **B;Make2DArray(B, n + 1, n + 1);for (int i = 1; i <= n - 1; i++)for (int j = i + 1; j <= n; j++)cin >> B[i][j];cout << BBArrangeBoards(B, n, p) << endl;for (int i = 1; i <= n; i++)cout << p[i] << " ";cout << endl;return 0;
}

▲验证

书上案例验证通过。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/705979.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SQL】SQL常见面试题总结(3)

目录 1、聚合函数1.1、SQL 类别高难度试卷得分的截断平均值&#xff08;较难&#xff09;1.2、统计作答次数1.3、得分不小于平均分的最低分 2、分组查询2.1、平均活跃天数和月活人数2.2、月总刷题数和日均刷题数2.3、未完成试卷数大于 1 的有效用户&#xff08;较难&#xff09…

C++ I/O流(一)——输出流

一、IO流概念 IO流可分为输入流和输出流,用于从设备(如键盘、文件、网络等)读取数据或向设备写入数据。C++标准库提供了丰富的IO流类,包括iostream、fstream、stringstream等,分别用于处理控制台输入输出、文件输入输出和字符串流操作。 读操作:输入流中读取数据到程序中…

Spring Boot | SpringBoot 中 自定义 “用户授权管理“ : 自定义“用户访问控制“、自定义“用户登录控制“

目录: 一、SpringBoot 中 自定义 "用户授权管理" ( 总体内容介绍 ) :二、 自定义 "用户访问控制" ( 通过 "HttpSecurity类" 的 authorizeRequests( )方法来实现 "自定义用户访问控制" ) :1.基础项目文件准备2.实现 "自定义身份认…

论文阅读-《MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation》

目录 1 摘要 2 介绍 3 相关工作 3.1 3D HPE 3.2 ViT 3.3 多假设方法 4 MHFormer 4.1 概述 4.2 准备阶段 4.2.1 多头自注意力机制&#xff08;MSA&#xff09; 4.2.2 多层感知器&#xff08;MLP&#xff09; 4.3 MHG-多假设生成 4.3.1 概述 4.3.2 详细解释&#x…

镭速助力企业加密上传大文件

在当代的数字化社会中&#xff0c;海量数据已成为我们日常生活的一个不可分割的组成部分。尤其是对于企业来说&#xff0c;如何在互联网上安全地传输庞大数据文件&#xff0c;是一个至关重要的问题。本文将深入探讨镭速技术如何利用加密手段&#xff0c;安全地将大型数据文件上…

无需MAC,也能打开Sketch文件:多平台兼容软件介绍

Sketch是专门为Macos开发的矢量图形绘制软件&#xff0c;帮助很多设计师创作了很多优秀的作品&#xff0c;其强大的功能受到很多设计师的喜爱。但是Sketch受到Macos系统的限制&#xff0c;这也让很多设计师非常苦恼。有时候他们不能在Mac打开Sketch文件&#xff0c;那么他们能在…

Spring Boot | Spring Boot 中 自定义“用户退出控制“、获取“登录用户信息“

目录: 一、SpringBoot 中 自定义 "用户授权管理" ( 总体内容介绍 ) :二、 自定义 "用户退出控制" ( 通过 "HttpSecurity类" 的 logout( )方法来实现 "自定义用户用户登录控制" ) :1.基础项目文件准备2.实现 "自定义身份认证"…

基于WTVxxx语音芯片方案在智能小家电领域的应用介绍

一、产品市场&#xff1a; WTVxxx系列语音芯片凭借其出色的性价比&#xff0c;在小家电制造业中脱颖而出&#xff0c;它在确保优异音质及全面功能的基础上&#xff0c;大幅度削减了生产成本&#xff0c;为产品在激烈的市场竞争中赢得了价格优势&#xff0c;并为制造商拓宽了盈利…

[Algorithm][回溯][字母大小写全排列][优美的排列][N皇后]详细讲解

目录 1.字母大小写全排列1.题目链接2.算法原理详解3.代码实现 2.优美的排列1.题目链接2.算法原理详解3.代码实现 3.N 皇后1.题目链接2.算法原理详解3.代码实现 1.字母大小写全排列 1.题目链接 字母大小写全排列 2.算法原理详解 本题逻辑与子集大致相同 思路一&#xff1a;每…

爬虫界的“闪电侠”:异步爬虫与分布式系统的实战秘籍

Hi&#xff0c;我是阿佑&#xff0c;前文给大家讲了&#xff0c;如何做一个合法“采蜜”的蜜蜂&#xff0c;有了这么个自保的能力后&#xff0c;阿佑今天就将和大家踏入 —— 异步爬虫 的大门&#xff01; 异步爬虫大法 1. 引言1.1 爬虫框架的价值&#xff1a;效率与复杂度管理…

测试图像中的环与透镜效果。

我做了三张图片&#xff0c;发现我之前提出的环与带居然都存在。 这个图片的环不明显&#xff0c;需要放大才能看得出来&#xff0c;但是透镜效果&#xff0c;这里只能称之为带了。 这张图的环比较清晰&#xff0c;因为我做了更小的缩放。 制作环和带的过程是需要抗干扰&#…

C++ | Leetcode C++题解之第92题反转链表II

题目&#xff1a; 题解&#xff1a; class Solution { public:ListNode *reverseBetween(ListNode *head, int left, int right) {// 设置 dummyNode 是这一类问题的一般做法ListNode *dummyNode new ListNode(-1);dummyNode->next head;ListNode *pre dummyNode;for (i…