李宏毅-Self-attention机制详解

原视频链接:attention

一. 基本问题分析

1. 模型的input

无论是预测视频观看人数还是图像处理,输入都可以看作是一个向量,输出是一个数值或类别。然而,若输入是一系列向量,长度可能会不同,例如把句子里的单词都描述为向量,那么模型的输入就是一个向量集合,并且每个向量的大小都不一样。解决这个问题的方法是One-hot Encoding以及Word Embedding,其中Word Embedding更能考虑到相似向量的语义信息,如下所示:

2. 模型的output

输出可以是每个vector都产生个对应的label,即N to N。如:在社交网络中,推荐某个用户商品(这个用户可能会买或者不买);

也可以是N to 1。如:情感分析,给出一句话this is good,输出positive;反之给出另一段消极的话输出negative;

也可以是N to M。如:翻译工作,翻译到另一个语言可能和原语言单词长度不一样

3. attention的引入

比如我们想利用全连接网络,输入一个句子,输出对应单词的标签。当一个句子里出现两个相同的单词,并且它们的词性不同(例如:I saw a saw. 我看见一把锯子),这个时候就需要考虑上下文:利用滑动窗口,每个向量查看窗口中相邻的其他向量的性质。 但是滑动窗口所观看的视野是有限的,窗口增大又会计算量增大,且容易过拟合,这就引出了self-attention机制。

二. self-attention机制

输入整个语句的向量到self-attention中,输出对应单词的向量,再将其结果输入到全连接网络,最后输出标签。以上过程可多次重复,如图所示:

 1. 初探“self-attention层”内部机理

这里的a1-a4可以是输入的向量,也可以是隐藏层的输出,b1-b4都是观察到全局的信息(即a1-a4)才得到的输出,如下所示:

 那么这里的b1-b4又是如何产生的呢?b1考虑了a1和这个序列里面哪些是重要的,哪些是次要的。这种重要程度指标通过α表示,即向量之间都有一个相关程度:

 接下来考虑α是如何计算的,下图有两种方法,论文用的是第一种(图左侧),因此着重讲述。继续使用上面的例子,绿色方块代表两个向量a1和a4,我们想计算它们的相关度,将其分别乘上矩阵Wq与Wk(这两个矩阵是通过模型学习学到的)得到向量q与k,再将q与k做内积就得到α了。

  这样我们可以分别计算出a2、a3、a4对应的k2、k3、k4(Wk是这些向量所共享的),我们可以分别计算出a1与a2、a3、a4的相关度α1,2、α1,3、α1,4,当然α1,1是和自己的相关度,也可以算。如下所示:

 有了α后,我们可以考虑b1-b4的计算了,怎么使用这些α抽取关注的特征呢?我们再引入一个矩阵Wv(同样是学习得到的),分别将a1-a4与Wv相乘得到v1-v4,将v1与α1,1相乘,v2与α1,2相乘...最后相加,即得到了b1。b2、b3、b4是同理的,下图只画出来了b1:

 2. 再探“self-attention层”内部机理

看起来可能复杂,但是实际上涉及的参数只有输入的向量以及Wq、Wk、Wv三个矩阵。运算过程也都是矩阵乘法。我们从矩阵乘法的角度重新理解下,如下图所示,我们将输入向量a1-a4拼起来,分别乘Wq、Wk、Wv即得到了q1-a4、k1-k4、v1-v4:

将k1-k4与q1-q4做内积即得到了每个向量与其他三个向量的相关度,如下图所示,例如第一个向量与其他三个向量的相关度为α1,2、α1,3、α1,4,而α1,1代表和自己的相关度:

将α组成的矩阵记为A,经过softmax处理一下记为A':

 v1-v4组成矩阵V,与A'相乘,根据矩阵乘法,V与A'的第一列相乘再相加的结果即为b1,同理可得b2-b4,b1-b4组成的矩阵就是最终的输出了:

 3. 总结 

  • 阶段1:根据Q和K计算两者的相似性或者相关性
  • 阶段2:对第一阶段的原始分值进行归一化处理
  • 阶段3:根据权重系数A'对V进行加权求和,得到最终的输出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/707296.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

手机自动化操作:uiautomator

更多精彩内容在公众号。 前面介绍的adb方法都不好实现代码自动化控制,如果想要实现代码自动化控制的话就要用到uiautomator这个工具 UiAutomator是一个用于Android平台的自动化测试框架。它允许开发人员编写自动化测试脚本来模拟用户在Android设备上的操作&#xf…

回归的无分布预测推理

摘要 我们利用保形推理,开发了回归中无分布预测推理的一般框架。所提出的方法允许使用回归函数的任何估计量构建响应变量的预测带。所得的预测带在标准假设下保留了原始估计量的一致性,同时保证了有限样本边际覆盖,即使这些假设不成立。我们…

Unity Mirror 从入门到入神(一)

Mirror从入门到成神 文章目录 Mirror从入门到成神简介NetworkClientRegisterPrefabConnect (string address)Disconnect ()activeactiveHost NetworkServerSpawn 简介 Mirror是一个unity网络同步框架,基于MonoBehaviour生命周期的回调的基础上进行数值的同步&#…

文本三剑客-awk

一、awk的介绍 1.1awk的简介 AWK 是一种处理文本文件的语言,是一个强大的文本分析工具 可以在无交互的模式下实现复杂的文本操作 相较于sed常作用于一整个行的处理,awk则比较倾向于一行当中分成数个字段来处理,因为awk相当适合小型的文本…

SQL已知2商品的总价,求商品的数量

已知商品1和2价格,求商品1的数量(商品2的数量自动计算),使得商品总价小于并最接近目标总价的值; 解决: 使用MySQL数据库: -- 创建表 CREATE TABLE products (price_1 INT,price_2 INT,target_p…

回顾程序员18年自己取得的一些成绩有想卖ERP源码的冲动

好久没来csdn发文章,记录自己程序员生涯的心得了,回顾自己2006年湘大信息计算科学专业毕业,当年和班里其他两个同学被招录进富士康,做为新干班签了3年半的合同,在那呆了2年,感觉富士康毕竟是个制造业&#…

HackTheBox-Machines--Bank

文章目录 0x01 信息收集0x02 文件上传漏洞利用0x03 权限提升方法一:SUID提权方法二:配置不当提权 Bank 测试过程 0x01 信息收集 1.端口扫描 发现 ssh(22)、DNS(53)、HTTP(80) 端口 nmap -sC -sV 10.129.29.200访问 80 端口,页面为Apache2 U…

翻译《The Old New Thing》- Stupid debugger tricks: Calling functions and methods

Stupid debugger tricks: Calling functions and methods - The Old New Thing (microsoft.com)https://devblogs.microsoft.com/oldnewthing/20070427-00/?p27083 Raymond Chen 2007年04月27日 一个比较笨的调试技巧:调用函数和方法 在过去,如果你想在…

大模型时代,交换机技术演变、性能分析、衡量指标

OSI协议及在高性能计算中向RDMA的过渡 协议是为计算机网络内的数据交换而建立的一组规则、标准或协议。在法律层面,OSI七层协议被视为国际标准。该协议于20世纪80年代引入,旨在通过其七层网络模型标准化计算机间通信,以满足开放网络的要求。…

Lazyboy品牌发布会“球幕气膜”

Lazyboy品牌发布会“球幕气膜”为品牌活动提供了一个独特、现代化、环保的展示空间。这座球幕气膜不仅为发布会提供了一个视觉震撼的场地,也为与会嘉宾带来了全新的体验。作为轻空间(江苏)膜科技有限公司(以下简称“轻空间”&…

C++ 数据结构算法 学习笔记(25) - 图及其企业级应用

C 数据结构算法 学习笔记(25) - 图及其企业级应用 图的故事导入 故事情节 Jack 自从买车后,交通出行方便了,心自然就野了!身边的各种朋友自然就多了起来! 有一天晚上,一个年轻漂亮的女同事生日,Jack 受邀…

可用在vue自动导入的插件unplugin-auto-import

在大多数vue3开发中,基本所有页面都会引用vue3 componsition api,如下代码 想这种vue3 架构中自带的api,如果在全局配置一下的话,就可以减少一部分代码量,只是在代码编译的时候,会添加相应的引用&#xff…