神经网络中神经元的权重更新

news/2025/1/11 17:02:59/文章来源:https://www.cnblogs.com/wang_yb/p/18302955

前段时间写过一篇介绍神经网络的入门文章:神经网络极简入门。
那篇文章介绍了神经网络中的基本概念和原理,并附加了一个示例演示如何实现一个简单的神经网络。

不过,在那篇文章中并没有详细介绍神经网络在训练时,是如何一步步找到每个神经元的最优权重的。
本篇介绍神经网络训练时,常用的一种权重更新的方式--梯度下降

1. 回顾神经网络

首先,回顾一下神经网络模型主要包含哪些部分:
image.png
如上图所示,核心部分有:

  • 神经元:图中黑色圆圈部分,接受输入,产生输出
  • 层:神经元的集合,图中蓝色,绿色框,一个层一般包含一个或多个神经元

image.png
神经元对输入进行两步计算:

  • 对各个输入按照权重求和
  • 求和的结果再经过一个激活函数,得到一个输出值

神经网络的训练过程,就是给每个神经元找到一个合适的权重
使得神经网络最后的输出(\(Output\))与目标值相差最小。

神经网络的结构不难,难点在于神经元和层多了之后,计算量暴增,需要强大的硬件支持。

2. 初始权重分配

下面回归本篇的主题,也就是神经网络中权重是如何更新和确定的。

我们知道,神经网络之所以如此流行,是因为基于它的模型,准确度远远好于传统的机器学习模型。
而神经网络模型的好坏取决于每个神经元的权重是否合理。

先假设做一个简单的神经网络,看看神经网络模型如何从输入值计算出输出值的。
image.png
这个网络中,假设我们的激活函数用\(y=\frac{1}{(1+e^x)}\)
那么,根据神经元的计算方法,先求和\(x_1w_{1,1}+x_2w_{2,1}\)
再用激活函数得到:\(y_1=\frac{1}{1+e^{(x_1w_{1,1}+x_2w_{2,1})}}\)
同理可得:\(y_2=\frac{1}{1+e^{(x_1w_{1,2}+x_2w_{2,2})}}\)\(y_2=\frac{1}{1+e^{(x_1w_{1,3}+x_2w_{2,3})}}\)

最终可得输出:\(z_1=\frac{1}{1+e^{(y_1 w^{'}_{1,1}+y_2 w^{'}_{2,1}+y_3 w^{'}_{3,1})}}\)
从上面的计算过程可以看出,\(x_1,x_2\)是输入值,无法改变;
\(y_1,y_2,y_3\)\(z_1\)是计算产生的,也无法改变。
在神经网络中,我们能够调整优化的就是权重值\(w_{1,1},...,w_{2,3}\)以及\(w^{'}_{1,1},...,w^{'}_{3,1}\)

理论上,初始化神经网络时,可以设置任意的权重,通过不断的训练最终得到合适的权重。
但实际情况下,模型的训练并不是万能的,初始权重设置的不好,对于训练花费的时间和训练结果都会造成不利的影响。

比如,初始权重设置的太大,会导致应用在数据上的激活函数总是处于斜率非常平缓的位置(如下图虚线红框处),
从而降低了神经网络学习到更好权重的能力。。
image.png

此外,还有一个问题是不要设置零值的权重,这也会导致神经网络丧失学习更好权重的能力。

所以,设置初始权重时:

  • 选择随机的,值比较小权重,常见的范围是0.01~0.99-1.0~1.0(不要选择0)
  • 权重的分配最好与实际问题关联,比如实际问题中,知道某些输入值的重要性高,可以初始较大的权重

3. 误差的反向传播

训练神经网络,除了设置初始权重之外,另一个重要的部分就是计算误差。
误差就是根据训练结果与实际结果的差距。
image.png
比如上图,训练结果是\(o_1\),实际结果是\(t_1\),误差就是\(e=t_1-o_1\)
根据这个误差\(e\),来计算上一层中各个神经元计算后的误差。

误差一般是根据神经元权重所占的比例来分配的。
比如,假设上图的神经网络中,最后一层的初始权重\(w^{'}_{1,1}=0.58, w^{'}_{2,1}=0.21, w^{'}_{3,1}=0.36\)
最后的误差为\(e=2\)
image.png

那么,根据\(w^{'}_{1,1}, w^{'}_{2,1}, w^{'}_{3,1}\)的权重在这一层所占的比例来更新这一层的误差:
\(e_{y1}=e\times \frac{w^{'}_{1,1}}{w^{'}_{1,1}+w^{'}_{2,1}+w^{'}_{3,1}}=2\times \frac{0.58}{0.58+0.21+0.36}\approx 1.01\)
同理可得:\(e_{y2}\approx 0.37\)\(e_{y3}\approx 0.63\)

然后再根据\(e_{y1},e_{y2}, e_{y3}\)去更新上一层的误差。
image.png
这样,从后往前,就得到了每个神经元的计算所产生的误差。
因为误差是从后往前计算的,所以也成为误差的反向传播

4. 优化权重的思路

通过误差的反向传播计算出每个神经元的误差,目的就是基于这个误差来更新神经元的权重值。

  • 当神经元的误差较大时,尝试减小神经元的权重值;
  • 当神经元的误差较小时,尝试增加神经元的权重值。

这也就是梯度下降算法的思路。

那么权重每次更新多少合适呢?
每次更新步长太小,将导致计算量过大,经过很长时间的迭代才能找到最优值,如下:
image.png
而且,更新步长太小,还会导致找到次优值之后,就以为已经找到最优值,如下:
image.png

不过,每次权重更新步长过大,也会有问题,有可能会错过最优值,在最优值附近来回横跳,如下:
image.png

所以,计算出误差之后,更新权重不是一次就能完成的。
一般来说,会尝试用多种不同的步长来更新权重,看看哪种步长更新的权重会使得最后的误差最小。

5. 总结

总的来说,神经网络的训练,关键点主要有:

  1. 确定初始权重
  2. 误差反向传播
  3. 尝试不同步长更新权重,尽量找出最优值(也就是使得最终误差最小的权重)

整个训练过程大致如下:
image.png
上图中,结束训练的条件是误差<阈值,有的时候,可能会出现很长时间之后误差始终都大于阈值,无法结束训练。
这时,可以加一个条件,误差<阈值或者迭代次数到达1000次(可以任意次数),就结束训练。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/744080.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CaiT:Facebook提出高性能深度ViT结构 | ICCV 2021

CaiT通过LayerScale层来保证深度ViT训练的稳定性,加上将特征学习和分类信息提取隔离的class-attention层达到了很不错的性能,值得看看 来源:晓飞的算法工程笔记 公众号论文: Going deeper with Image Transformers论文地址:https://arxiv.org/abs/2103.17239 论文代码:htt…

Nessus Professional 10.7 Auto Installer for RHEL 9/AlmaLinux 9/Rocky Linux 9 (updated Jul 2024)

Nessus Professional 10.7 Auto Installer for RHEL 9/AlmaLinux 9/Rocky Linux 9 (updated Jul 2024)Nessus Professional 10.7 Auto Installer for RHEL 9/AlmaLinux 9/Rocky Linux 9 (updated Jul 2024) 发布 Nessus 试用版自动化安装程序,支持 macOS Sonoma、RHEL 9 和 Ub…

面试官:Dubbo一次RPC请求经历哪些环节?

大家好,我是三友~~ 今天继续探秘系列,扒一扒一次RPC请求在Dubbo中经历的核心流程。本文是基于Dubbo3.x版本进行讲解一个简单的Demo 这里还是老样子,为了保证文章的完整性和连贯性,方便那些没有使用过的小伙伴更加容易接受文章的内容,这里快速讲一讲Dubbo一个简单的Demo 如…

[SUCTF 2018]GetShell 1

自增绕过,文件上传打开是一个白的页面,开始信息收集,可以在前端代码中看到,index.php?act=upload尝试访问之后发现是文件上传发现是直接给了源码的,代码解释: 这段PHP代码用于处理一个通过HTML表单上传的文件,并检查该文件的内容是否包含任何黑名单中的字符。下面是逐行…

运算式树(Expression tree)深入学习

前言 运算式树(Expression tree)是二叉树数据结构。 目的是实现方便的叠加各种查询条件,无限制的拼接成一个查询条件。提高复杂查询逻辑的编码效率。 一、Lambda表达式 Lambda表达式分为运算式Lambda和语句式Lambda 下面用两种lambda实现同样功能的委托。 (1)运算式Lambda…

htmlToPdf处理视频

一个写好的html页面要打印pdf,其中有视频也有图片。参考了网上的一些方法,最终是在获取数据的时候,对视频进行了截取第一帧处理。 getFirstImgBase64(){this.piclist.forEach(item => {if(item.url.endsWith(.mp4)) {let dataURL = ""let video = document.cre…

my-tv修复版本

github上很火的项目,但是作者已不再维护,这里分享一个修复版本,可以正常观看 软件链接:https://pan.quark.cn/s/836a5050fcab

提升Camstar性能

😘宝子:除非不再醒来,除非太阳不再升起,不然都请你好好生活,挣扎着前进,开心的笑。(●◡●)

K8S教程:如何使用Kubeadm命令在PetaExpress Ubuntu系统上安装Kubernetes集群

Kubernetes,通常缩写为K8s,是一个开源的容器编排平台,旨在自动化容器化应用的部署、扩展和管理。有了Kubernetes,您可以轻松地部署、更新和扩展应用,而无需担心底层基础设施。一个Kubernetes集群由控制平面节点(master节点)和工作节点(worker节点)组成。确保集群的高效运行…