线段树详解——影子宽度

OK,今天来讲一讲线段树~~

  • 线段树是什么
  • 线段树的实现
  • 线段树的时间复杂度
  • 线段树的应用
  • 线段树的节点结构
  • 其他操作和优化
  • 例题——影子宽度
    • 输入输出格式
      • 输入格式
      • 输出格式
    • 输入输出样例
      • 输入样例
      • 输出样例
  • 例题讲解

线段树是什么

线段树( S e g m e n t Segment Segment T r e e ~~Tree   Tree)是一种二叉树,用于区间查询。线段树的每个节点表示一个区间,根节点表示整个区间,子节点表示区间的一半。线段树的典型应用是解决区间查询问题,例如区间最大值、区间最小值等。

线段树的实现

线段树的构建过程可以通过递归实现。给定一个数组 a r r arr arr,线段树的根节点表示 a r r [ 0 ] arr[0] arr[0] a r r [ n − 1 ] arr[n-1] arr[n1]之间的区间和(或其他区间操作)。根节点的左子节点表示 a r r [ 0 ] arr[0] arr[0] a r r [ ( n − 1 ) / 2 ] arr[(n-1)/2] arr[(n1)/2]之间的区间和,右子节点表示 a r r [ ( n − 1 ) / 2 + 1 ] arr[(n-1)/2+1] arr[(n1)/2+1] a r r [ n − 1 ] arr[n-1] arr[n1]之间的区间和。依次类推,直到区间被划分为长度为1的节点。

线段树的每个节点都会记录该节点表示的区间的一些统计信息,例如区间和、区间最大值、区间最小值等。该统计信息可以通过节点的左子节点和右子节点的统计信息来计算得到。

当要查询的区间与当前节点表示的区间有重叠时,查询操作会继续向下递归。当要查询的区间与当前节点表示的区间完全相等时,查询操作可以直接返回当前节点的统计信息。当要查询的区间在当前节点表示的区间的左半部分时,查询操作会向左子节点递归。当要查询的区间在当前节点表示的区间的右半部分时,查询操作会向右子节点递归。

当要更新的位置在当前节点表示的区间内时,更新操作会继续向下递归。当更新到叶子节点时,将该位置的值更新为给定的新值。然后,更新操作会向上递归,将更新后的值传递给父节点并重新计算父节点的统计信息。

线段树的时间复杂度

线段树的时间复杂度为 O ( l o g ( n ) ) O(log(n)) O(log(n)),其中n为数组的长度。这是因为构建线段树需要对每个节点进行一次操作,总共需要 O ( n ) O(n) O(n)的时间。查询操作的时间复杂度为 O ( l o g ( n ) ) O(log(n)) O(log(n)),因为查询的过程类似于二分查找,每次将查询范围缩小一半,最多需要递归 l o g ( n ) log(n) log(n)次。更新操作的时间复杂度也为 O ( l o g ( n ) ) O(log(n)) O(log(n))

线段树是一种非常强大的数据结构,可以用于解决各种区间查询问题。然而,线段树的应用并不局限于时间复杂度为 O ( l o g ( n ) ) O(log(n)) O(log(n))的问题,它还可以结合其他数据结构和算法来实现更高效的解决方案。例如,线段树可以与离散化、树状数组等结合使用,用于解决动态区间查询问题。同时,线段树还可以用于解决一些特殊情况下的区间查询问题,例如动态维护滑动窗口中的最大值、最小值等。

线段树的应用

线段树的应用非常广泛,以下是一些常见的应用场景:

  • 区间最小值/最大值查询:通过线段树可以在 O ( l o g ( n ) ) O(log(n)) O(log(n))的时间内找到任意区间的最小值或最大值。这在处理动态数据的情况下非常有用,例如动态维护滑动窗口的最小值、最大值。

  • 区间和查询:线段树可以用来快速计算区间内所有元素的和。这在求解数组范围内的连续子数组和、处理区间加法或区间更新操作等问题非常有用。

  • 区间更新:线段树可以将区间内的某个值更新为新值。这在处理动态修改数据的情况下非常有用,例如修改数组某个位置的值,或者将区间内的所有元素增加某个固定值。

  • 区间统计:除了求和、最小值、最大值等基本操作外,线段树还可以做更复杂的区间统计操作。例如,可以通过线段树求解区间内的第 k k k小元素,或者统计区间内有多少个不同的元素等。

  • 离散化:离散化是一种将连续的数据映射到离散的区间中的方法。通过使用线段树可以很方便地实现离散化操作,将大量的连续数据映射到有限的离散区间内,从而减小数据规模,提高查询效率。

  • 区间交集查询:线段树可以用于判断两个区间是否有交集,以及计算出两个区间的交集。这在处理区间重叠问题、查找共同区间等场景下非常有用。

  • 区间覆盖查询:线段树可以用于快速查找某个区间是否完全被覆盖,以及计算出所有覆盖某个区间的区间。这在处理区间合并、区间分割等问题非常有用。

线段树是一种非常强大而灵活的数据结构,可以根据需求进行扩展和优化。通过合理地设计数据结构和算法,线段树可以高效地解决各种区间查询问题,提高程序的性能和可扩展性。

线段树的节点结构

线段树的节点结构一般包含以下几个属性:

start 和 end:表示当前节点所代表的区间的起始和结束位置。
一个外挂:依题目而定

其他操作和优化

线段树还可以进行一些其他的操作和优化,例如:

  • 惰性更新:使用标记来延迟更新,减少更新操作的次数,提高效率。
  • 区间增量:维护区间值的增量,而不是直接修改区间的值,可以减少更新操作的次数。
  • 动态修改:支持在原始数据的基础上进行修改,而不需要重新构建整个线段树。

例题——影子宽度

精灵王的桌子上零散地放着若干个盒子,桌子的后方是一堵墙。如下图所示。现在从桌子的前方射来一束平行光,把盒子的影子投射到了墙上。问影子的总宽度是多少?
在这里插入图片描述

输入输出格式

输入格式

  • 第1行:盒子的个数N(1≤=N≤10000)。
  • 第2…N+1行:每个盒子的起始位置S和结束位置T(1≤S, T≤100000)。

输出格式

  • 第1行:包含一个整数,表示影子的总宽度。

输入输出样例

输入样例

4
1 2
3 5
4 6
5 6

输出样例

4

例题讲解

这题纯纯版题呀!!

#include <bits/stdc++.h>
using namespace std;
const int N=120000;
int n,m,maxx,minn,a[N],b[N],cover[4*N];
void insert(int idx,int ll,int rr,int x,int y) {if (x<=ll && y>=rr)		//如果区间范围包含当前线段cover[idx]=1;if(cover[idx]==1)	//如果当前线段已经被标记了return;int mid=(ll+rr)/2;if (y<=mid)insert(idx*2,ll,mid,x,y);	//左子树递归else if (x>=mid)insert(idx*2+1,mid,rr,x,y);		//右子树递归else {		//拆分成两边,分别递归insert(idx*2,ll,mid,x,y);insert(idx*2+1,mid,rr,x,y);}
}
int count(int idx,int ll,int rr,int x,int y) {if (cover[idx]==1)		//如果当前线段被标记return rr-ll;		//返回长度if (rr-ll>1) {		//如果当前线段还是一个线段int mid=(ll+rr)/2;int tx=count(idx*2,ll,mid,x,y);int ty=count(idx*2+1,mid,rr,x,y);return tx+ty;}return 0;
}
int main() {scanf ("%d",&n);for (int i=1;i<=n;i++) {scanf("%d%d",&a[i],&b[i]);if (a[i]>maxx)maxx=a[i];if (a[i]<minn)minn=a[i];if (b[i]>maxx)maxx=b[i];if (b[i]<minn)minn=b[i];//一堆判断,求最大边界和最小边界//有时候 是输入的数}for (int i=1;i<=n;i++)insert(1,minn,maxx,a[i],b[i]);		//标记线段printf("%d",count(1,minn,maxx,minn,maxx));		//输出结果return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/76341.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java源码分析(一)Integer

当你掌握Java语言到了一定的阶段&#xff0c;或者说已经对Java的常用类和API都使用的行云流水。你会不会有一些思考&#xff1f;比如&#xff0c;这个类是如何设计的&#xff1f;这个方法是怎么实现的&#xff1f;接下来的一系列文章&#xff0c;我们一起学习下Java的一些常见类…

【搭建WebDAV服务手机ES文件浏览器远程访问】

文章目录 1. 安装启用WebDAV2. 安装cpolar3. 配置公网访问地址4. 公网测试连接5. 固定连接公网地址6. 使用固定地址测试连接 有时候我们想通过移动设备访问群晖NAS 中的文件,以满足特殊需求,我们在群辉中开启WebDav服务,结合cpolar内网工具生成的公网地址,通过移动客户端ES文件…

tomcat中的BIO与NIO发展

tomcat中的NIO发展 前言 Tomcat目前支持BIO&#xff08;阻塞 I/O&#xff09;、NIO&#xff08;非阻塞 I/O&#xff09;、AIO&#xff08;异步非阻塞式IO&#xff0c;NIO的升级版&#xff09;、APR&#xff08;Apache可移植运行库&#xff09;模型&#xff0c;本文主要介绍NI…

第11步---MySQL的优化

第11步---MySQL的优化 1.概念 原先写功能。后来对平静进行优化 设计 查询语句 索引 存储 2.查看执行效率 -- 查看当前会话sql得执行类型得统计信息SHOW session STATUS like Com%上面展示得信息就是统计了当前会话得执行得操作得次数。 -- 查看全局得 SHOW GLOBAL STATU…

C语言刷题训练DAY.7

1.及格分数 解题思路&#xff1a; 这里直接用while语句控制循环&#xff0c;if else语句判断即可。 解题代码&#xff1a; #include<stdio.h> int main() {int a 0;while(scanf("%d", &a) ! EOF){if (a >60)printf("Pass\n");elseprintf…

【力扣每日一题】2023.8.17 切披萨的方案数

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一个二维数组来表示一个披萨&#xff0c;其中‘A’表示披萨上的苹果。 让我们切k-1刀&#xff0c;把披萨切成 k 份&#xff0…

Risk Probability

风险概率计算 sum p1 * v1 p2 * v2 p3 * v3 ... pn * vn

【使用Hilbert变换在噪声信号中进行自动活动检测】基于Hilbert变换和平滑技术进行自动信号分割和活动检测研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【先进PID控制算法(ADRC,TD,ESO)加入永磁同步电机发电控制仿真模型研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

小程序swiper一个轮播显示一个半内容且实现无缝滚动

效果图&#xff1a; wxml&#xff08;无缝滚动&#xff1a;circular"true"&#xff09;&#xff1a; <!--components/tool_version/tool_version.wxml--> <view class"tool-version"><swiper class"tool-version-swiper" circul…

亚信科技AntDB数据库连年入选《中国DBMS市场指南》代表厂商

近日&#xff0c;全球权威ICT研究与顾问咨询公司Gartner发布了2023年《Market Guide for DBMS, China》&#xff08;即“中国DBMS市场指南”&#xff09;&#xff0c;该指南从市场份额、技术创新、研发投入等维度对DBMS供应商进行了调研。亚信科技是领先的数智化全栈能力提供商…

一篇文章教你使用Docker本地化部署Chatgpt(非api,速度非常快!!!)及裸连GPT的方式(告别镜像GPT)

本地搭建ChatGPT&#xff08;非api调用&#xff09; 第一种方法&#xff1a;使用Docker本地化部署第一步&#xff0c;下载安装Docker登录GPT 第二种方法&#xff1a;不部署项目&#xff0c;直接连接 第一种方法&#xff1a;使用Docker本地化部署 这种方法的好处就是没有登录限…