【考研数学】矩阵、向量与线性方程组解的关系梳理与讨论

文章目录

  • 引言
  • 一、回顾
  • 二、梳理
    • 齐次线性方程组
    • 非齐次线性方程组
  • 写在最后


引言

两个原因让我想写这篇文章,一是做矩阵题目的时候就发现这三货经常绑在一起,让人想去探寻其中奥秘;另一就是今天学了向量组的秩,让我想起来了之前遗留下来的一个问题:到底存不存在系数矩阵的秩和增广矩阵的秩之差比 1 大的情况?可能这个问题有点抽象,不过看了下面的具体说明应该就能理解了。


一、回顾

问题起因是这样,我在写行列式的文章中关于克莱姆法则应用的说法是这样的:

在这里插入图片描述
有读者建议,把方程组无解的情况别写成 r ( A ) ≠ r ( A ‾ ) r(A) \ne r(\overline{A}) r(A)=r(A) ,而写成 r ( A ) + 1 = r ( A ‾ ) r(A) +1 = r(\overline{A}) r(A)+1=r(A) . 我当时还未复习到方程组和向量部分,有这样的疑问:为什么非得是相差 1 ,我如果 A A A 有很多行为 0 ,增广矩阵的秩不就可以比系数矩阵大不止 1 吗?

我当时隐约感觉是行秩和列秩模糊的问题。一方面矩阵中,我们比较常用的是初等行变换,忽视了列变换以及列秩,另一方面,列秩在方阵中和行秩是一样的。

起初我也是认为,列秩没什么用的,直到学到了向量这一部分。由于一般我们指的向量是列向量,那么由一个向量组构成的矩阵,自然考虑的是列秩。

因此我们针对一个一般性的 m × n m \times n m×n 矩阵或 n n n m m m 维的向量组进行梳理,请看下文。


二、梳理

对于一般齐次线性方程组:

在这里插入图片描述

以及一般非齐次线性方程组:

在这里插入图片描述

α 1 = ( a 11 , a 21 , … , a m 1 ) T , α 2 = ( a 12 , a 22 , … , a m 2 ) T , … , α n = ( a 1 n , a 2 n , … , a m n ) T , b = ( b 1 , b 2 , … , b m ) T \alpha_1=(a_{11},a_{21},\dots,a_{m1})^T,\alpha_2=(a_{12},a_{22},\dots,a_{m2})^T,\dots,\alpha_n=(a_{1n},a_{2n},\dots,a_{mn})^T,b=(b_{1},b_{2},\dots,b_{m})^T α1=(a11,a21,,am1)T,α2=(a12,a22,,am2)T,,αn=(a1n,a2n,,amn)T,b=(b1,b2,,bm)T ,则方程组(I)(II)可表示为如下向量形式: x 1 α 1 + x 2 α 2 + ⋯ + x n α n = 0 ( 1.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=0 (1.1) x1α1+x2α2++xnαn=01.1 x 1 α 1 + x 2 α 2 + ⋯ + x n α n = b ( 2.1 ) x_1\alpha_1+x_2\alpha_2+\dots+x_n\alpha_n=b (2.1) x1α1+x2α2++xnαn=b2.1

令矩阵 A = [ α 1 , α 2 , … , α n ] A=[\alpha_1,\alpha_2,\dots,\alpha_n] A=[α1,α2,,αn] ,即
在这里插入图片描述
则方程组(I)(II)可表示为如下矩阵形式: A ( x 1 , x 2 , … , x n ) T = 0 ( 1.2 ) A(x_1,x_2,\dots,x_n)^T=0(1.2) A(x1,x2,,xn)T=01.2 A ( x 1 , x 2 , … , x n ) T = b ( 2.2 ) A(x_1,x_2,\dots,x_n)^T=b(2.2) A(x1,x2,,xn)T=b2.2

齐次线性方程组

对于齐次线性方程组(I),它有 m m m 个约束方程, n n n 个未知数。首先我们应了解的是,不管方程个数和未知数个数多少,不可能无解,都是存在零解的。我们要讨论,就是讨论有没有非零解。我们分三种情况:

(一) m < n . m < n. m<n.

此时齐次线性方程组约束条件个数小于未知数,必有一个未知数无法受限制,如果那个不受限制的未知数取非零的话,就存在非零解。那么向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 必线性相关,则该向量组的秩 < n <n <n ,根据三秩相等性质, r ( A ) < n . r(A)<n. r(A)<n.

这种情况其实没什么好讨论的,因为肯定存在非零解,所以这也是为什么书上很少提及的情况吧。

(二) m = n . m=n. m=n.

此时就有讨论的必要了,因为方程组可能只有零解,也可能有非零解。

若齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.

我们此时可以得出 ∣ A ∣ ≠ 0 |A| \ne 0 A=0,即因为系数矩阵是方阵且满秩。

若齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

为什么是小于 n n n 呢?因为构成系数矩阵的列向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn的秩小于 n n n ,根据三秩相等性质,该矩阵的秩亦小于 n n n

(三) m > n . m > n. m>n.

此时约束方程个数更多,不过不影响什么。系数矩阵的秩仍然是满足 r ( A ) ≤ n , r(A) \leq n, r(A)n, 同样有和第 2 种情况一样的的结论。

把这三种情况总结起来,其实还是第二种情况的结论。因此不论是否是方阵,未知数和方程的个数如何,都有如下结论:即

  • 齐次方程组只有零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关 ⇔ \Leftrightarrow r ( A ) = n . r(A)=n. r(A)=n.
  • 齐次方程组有非零解 ⇔ \Leftrightarrow 向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关 ⇔ \Leftrightarrow r ( A ) < n . r(A)<n. r(A)<n.

非齐次线性方程组

对于非齐次线性方程组(II),它有 m m m 个约束方程, n n n 个未知数,右端常数向量为 b = ( b 1 , b 2 , … , b m ) \pmb{b=(b_1,b_2,\dots,b_m)} b=(b1,b2,,bm) ,增广矩阵为 A ‾ = [ A ∣ b ] . \overline{A}=[A|b]. A=[Ab].

我们从其对应的齐次线性方程组(I)出发,若(I)只有零解,根据上述结论,有向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关且 r ( A ) = n . r(A)=n. r(A)=n.

接下来我们讨论此时非齐次的情况,若非齐次线性方程组(II)无解,则向量 b \pmb{b} b 不能被无关的向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,故增广矩阵的列向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,b 也线性无关,可得 r ( A ‾ ) = n + 1 r(\overline{A})=n+1 r(A)=n+1 . 若非齐方程组(II)有解,则向量 b \pmb{b} b 能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,故增广矩阵的列向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,b 线性相关,可得 r ( A ‾ ) < n + 1 r(\overline{A})<n+1 r(A)<n+1 . 又因为向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性无关,故 r ( A ‾ ) = n = r ( A ) . r(\overline{A})=n=r(A). r(A)=n=r(A).

若方程组(II)对应的齐次方程组(I)有非零解,根据前一部分的结论,方程组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性相关且 r ( A ) < n . r(A)<n. r(A)<n.

我们讨论此时的非齐次方程组(II)的情况,若方程组(II)无解,则向量 b \pmb{b} b 不能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,但由于向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 是线性相关的,故增广矩阵的列向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,b 线性相关,可得 r ( A ‾ ) < n + 1 r(\overline{A})<n+1 r(A)<n+1 r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

因为向量 b \pmb{b} b 不能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,则向量组 α 1 , α 2 , … , α n , b \pmb{\alpha_1,\alpha_2,\dots,\alpha_n,b} α1,α2,,αn,b 的秩比向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 多 1 ,即 r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.
O.O 这个还是可以直观理解的。向量组是一列一列的,加了一列不能被原来表示的列,肯定秩加了 1 嘛。

若方程组(II)有解,则向量 b \pmb{b} b 能被向量组 α 1 , α 2 , … , α n \pmb{\alpha_1,\alpha_2,\dots,\alpha_n} α1,α2,,αn 线性表示,故 r ( A ‾ ) = r ( A ) < n . r(\overline{A})=r(A)<n. r(A)=r(A)<n.

如下图所示,讨论了所有情况下的秩的特征

在这里插入图片描述

总结一下可以得到如下一般性的结论:

  • 非齐次方程组有解 ⇔ \Leftrightarrow r ( A ‾ ) = r ( A ) . r(\overline{A})=r(A). r(A)=r(A).
  • 非齐次方程组无解 ⇔ \Leftrightarrow r ( A ‾ ) ≠ r ( A ) , r(\overline{A})\ne r(A), r(A)=r(A), r ( A ‾ ) = r ( A ) + 1. r(\overline{A})=r(A)+1. r(A)=r(A)+1.

有解其实还可以再做讨论,就放在后面方程组那一章再来细说吧。


写在最后

看来还是自己疏忽了三秩相等的性质,才会产生开头那样的疑问。

现在也越来越认同,其实向量才是贯穿线性代数的重要工具。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/81584.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux后门大全-xinetd后门(二)

环境 靶机&#xff1a;centos7.6 攻击机&#xff1a;Linux 使用docker搭建靶机环境&#xff0c;当然也可以不使用docker&#xff0c;直接跳过创建容器的步骤即可 创建容器 #创建名为backdoorT4的特权容器&#xff0c;并使用/usr/sbin/init&#xff0c;因为容器默认不开启sy…

java:Servlet

背景 我们访问浏览器访问一个地址&#xff0c;最终是访问到了这个 java 类&#xff0c;而 java 是运行在 Tomcat 上的&#xff0c;所以 Tomcat 作为一个服务器会把这个访问地址指向这个类中&#xff0c;这个类就是 Servlet&#xff0c;Servlet 就是一个具有一定规范的类&#x…

牡丹宣言|对国潮化妆品品牌的理解

化妆品的国潮概念&#xff1f; ■ 是中国的时代潮流。 ■ 是传统元素与现代元素的碰撞。 ■ 是一股年轻的力量。 ■ 是大国崛起的象征。 ■ 是中国文化自信的体现。 如何正确认知化妆品&#xff1f; ■ 化妆品不是药品 ■ 化妆品是一种观念 ■ 化妆品是一种习惯 ■ 化…

【科研】-- 如何将Endnote中参考文献格式插入到Word?

文章目录 如何将Endnote中参考文献格式插入到Word&#xff1f; 如何将Endnote中参考文献格式插入到Word&#xff1f; 1、首先确保Endnote和Word安装正确&#xff0c;正常可以从学校官网中下载到正版软件&#xff0c;下载后在word栏目中会出现EndNote的标签&#xff1b; 2、可…

Python使用pyqt5写windows桌面应用实战教程

本篇文章主要讲解,Python使用pyqt5写windows桌面应用的详细实战教程文章,主要涵盖单个界面的布局构建说明,表单构建说明,数据交互构建说明以及可直接开发的简易多界面框架实例构建说明,能够让你很快的了解pyqt在python中的使用和构建方式,快速实现一个简单的windows桌面图…

特殊的矩阵与特殊的矩阵关系———实对称、正定、对角、零矩阵

一、特殊的矩阵 1、实对称矩阵 定义&#xff1a;都是实数&#xff0c;且 性质&#xff1a; &#xff08;1&#xff09;可以用特征值来求A的大小 &#xff08;2&#xff09;可以得到A的秩 &#xff08;3&#xff09;必定可以相似对角化 运用&#xff1a; 与实对称矩阵A合同的矩…

【云原生】Docker私有仓库 RegistryHabor

目录 1.Docker私有仓库&#xff08;Registry&#xff09; 1.1 Registry的介绍 1.2 Registry的部署 步骤一&#xff1a;拉取相关的镜像 步骤二&#xff1a;进行 Registry的相关yml文件配置&#xff08;docker-compose&#xff09; 步骤三&#xff1a;镜像的推送 2. Regist…

centos7安装hadoop 单机版

1.解压 &#xff08;1&#xff09;将hadoop压缩包复制到/opt/software路径下 &#xff08;2&#xff09;解压hadoop到/opt/module目录下 [rootkb135 software]# tar -zxvf hadoop-3.1.3.tar.gz -C /opt/module/ &#xff08;3&#xff09;修改hadoop属主和属组 [rootkb135 m…

如何五分钟设计制作自己的蛋糕店小程序

在现如今的互联网时代&#xff0c;小程序已成为企业推广和销售的重要利器。对于蛋糕店来说&#xff0c;搭建一个小程序可以为其带来更多的品牌曝光和销售渠道。下面&#xff0c;我们将以乔拓云平台为例&#xff0c;来教你如何从零开始搭建自己的蛋糕店小程序。 首先&#xff0c…

【方案】安防监控EasyCVR智慧工地视频监管风险预警平台的应用

智慧工地方案是一种结合现代化技术与工地管理实践的创新型解决方案。它通过实时监控、数据分析、人工智能等技术手段&#xff0c;使工地管理更加高效、智能化。在建设智慧工地的过程中&#xff0c;除了上述提到的利用物联网技术实现设备互联、数据采集及分析以外&#xff0c;还…

Spring 事务(事务、声明式事务@Transactional、事务隔离级别、事务传播机制)

目录 1.事务的定义 2.Spring中事务的实现 2.1 MySQL中的事务使用 2.2 Spring中编程事务的实现 2.3 Spring中声明式事务 2.3.1 声明式事务的实现 Transactional 2.3.2 Transactional 作用域 2.3.3 Transactional 参数说明 2.3.4 注意事项 &#xff08;1&#xff09;解…

前端行级元素和块级元素的基本区别

块级元素和行内元素的基本区别是&#xff0c; 行内元素可以与其他行内元素并排&#xff1b;块级元素独占一行&#xff0c;不能与其他任何元素并列&#xff1b; 下面看一下&#xff1b; <!DOCTYPE html> <html> <head> <meta charset"utf-8"&…