公式
\((a^x)' = \ln(a)a^x\)
\((log_ax)' = \frac{1}{x\ln(a)}\)
证明
\((a^x)' = \lim_{\Delta x \to 0}\frac{a^{x+\Delta x}-a^x}{\Delta x} = a^x\lim_{\Delta x \to 0}\frac{a^{\Delta x}-1}{\Delta x}\)
假设当 \(a\) 取 \(e\) 时 \(\lim_{\Delta x \to 0}\frac{a^{x+\Delta x}-a^x}{\Delta x} = 1\) 即 \((e^x)' = e^x\)
\(y = a^x = e^{x\ln(a)}\)
\(y' = \ln(a)e^{x\ln(a)}\)
\(y' = \ln(a)a^x\)
因此 \((a^x)' = \ln(a)a^x\)
\(y = \log_a(x)\)
\(a^y = x\)
\(\ln(a)a^yy' = 1\)
\(y' = \frac{1}{\ln(a)a^y}\)
\(y' = \frac{1}{x\ln(a)}\)
\((log_ax)' = \frac{1}{x\ln(a)}\)