ReINSTEIN 大战 ReISENSTEIN 大战 RePPSTEIN

news/2024/11/19 21:29:21/文章来源:https://www.cnblogs.com/Troverld/p/18555628

\[\newcommand{\bmat}[1]{\begin{bmatrix}#1\end{bmatrix}} \newcommand{\b}{\boldsymbol} \newcommand{\d}{\mathrm d} \newcommand{\p}{\partial} \newcommand{\varp}{\varphi} \]

一个事件可以用一个四元组 \((x,y,z,t)\) 来定位。这个四元组必然要相对一个原点 \(O\) 而建构。现在,从 \(S\) 系转到沿 \(x\) 轴以 \(v\) 的速度匀速运动的 \(S'\) 系(在两系计时同为 \(t=0\) 时,认为原点重合),在 Newton 空间下,有 Galilean 变换

\[\begin{cases} x'=x-vt \\y'=y \\z'=z \\t'=t \end{cases} \]

但是这不是刻画世界的应有模式。在 Minkowski 时空中,变换须满足其相关的等式

\[c^2\Delta t'^2-\Delta x'^2-\Delta y'^2-\Delta z'^2=c^2\Delta t^2-\Delta x^2-\Delta y^2-\Delta z^2 \]

从这个假设出发,即导出 Lorentz 变换

\[\begin{cases} x'=\gamma(-\beta ct+x) \\y'=y \\z'=z \\ct'=\gamma(ct-\beta x) \end{cases} \]

其中 \(\beta=\dfrac vc\)\(\gamma=\dfrac1{\sqrt{1-\beta^2}}\)。使用矩阵语言,即有

\[\bmat{x'\\y'\\z'\\ict'}=\bmat{\gamma&0&0&i\gamma\beta\\0&1&0&0\\0&0&1&0\\-i\gamma\beta&0&0&\gamma}\bmat{x\\y\\z\\ict} \]

中间的这个矩阵称作沿 \(x\) 轴 boost 的 Lorentz 变换矩阵,记作 \(\Lambda\)

任意满足通过 \(\Lambda\) 进行变化的四元组都被称作一个四元矢量。

四维时空间隔

\[\Delta s^2=\Delta x^2+\Delta y^2+\Delta z^2-c^2\Delta t^2=\|\b v\|^2 \]

是任意坐标系下的守恒量,其中 \(\b v\) 是依上述法定义的一个四元矢量。


对于两个事件,若取一个系,使得在该系中两事件先后发生于同一点,则此时两事件间隔被称作 固有时,记作 \(\Delta\tau\)。固有时只与事件有关。

在固有时下,有 \(\Delta s^2=-c^2\Delta\tau^2\),则 \(\Delta\tau=\dfrac ic\Delta s\);同时,有 \(\Delta s^2=(v\Delta t)^2-(c\Delta t)^2\),可知 \(\Delta t=\dfrac{i\gamma}c\Delta s\)。于是固有时 \(\Delta\tau\) 和坐标时 \(\Delta t\) 的关系是

\[\Delta\tau=\dfrac{\Delta t}{\gamma} \]

因为 \(\gamma>1\),所以可知:固有时最短。


四维坐标矢量 \((\b x,ict)\),其模长为固有的 \(-c^2\tau^2\)

令其关于固有时 \(\tau\) 的导数定义为四维速度矢量,则有四维速度矢量 \((\gamma\b v,ic\gamma)\),其中 \(\b v\)\(\dfrac{\d\b x}{\d t}\) 的传统三维速度向量。四维速度的模长是固有的 \(-c^2\)

把一个质量为 \(m\) 的粒子的四维动量定义为其质量和其四维速度的乘积。其最后一个分量,再乘一个光速,就是能量。即,四维动量 \((\gamma m\b v,i\gamma m_0c)=(\b p,iE/c)\)。其模长是固有的 \(-c^2m_0^2\)。特别地,因为动质量 \(m=\gamma m_0\),所以其也可以被写成 \((\b p,imc)\) 的形式。

四维力是四维动量对固有时的导数,即 \((\gamma\b F,i\dfrac\gamma c\b F\cdot\b v)\)。其三维方面指出 \(\dfrac{\d\b p}{\d t}=\b F\),即 Newton 第二定律;其第四维方面指出 \(\b F\cdot\b v=\dfrac{\d E}{\d t}\),即能量守恒定律。因此,四维形式的 Newton 运动定律同时涵盖了三维 Newton 定律和能量守恒定律。

四维电流是 \((\b j,ic\rho)\)。其模长是固有的 \(-c^2\rho_0^2\),其中 \(\rho_0\) 是静电荷密度。

四维势 \((\b A,i\varp)\)。但是,因为对于某一组确定的 \((\b E,\b B)\),有不止一组 \(\b A,\varp\),因此出现了所谓的 规范冗余:对于一个时空标量场 \(\chi\),令 \(\varp\to\varp+\dfrac1c\dfrac{\p\chi}{\p t},\b A\to \b A-\nabla\chi\),则对应的电磁场不发生变化。此时,可以施加所谓的 Lorentz 规范以处理这种冗余。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/837008.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

流和向量(Streams and Vectors)

在GNU Radio的官方教程中,提到了两个重要的块连接方式:流和向量(Streams and Vectors)。具体的章节链接为: 🔗:流和向量 - GNU Radio 🔗:带有向量的 Python 块 - GNU Radio 官方文档对流和向量的概念和使用有着简介和直观的讲述,但对于两者之间的转化方法以及何时使…

接口测试之fiddler(10.2)

一、fiddler包安装 路径也尽量不要有中文安装步骤:略 二、Fiddler 简介 fiddler 是 C# 开发免费web调试工具之一,记录所有客户端和服务端常见的 http 以及 https 请求,可监视设断点,甚至修改输入输出数据,它还包含了一个强大的基于事件脚本的子系统,并且能使用 .net 语言…

JDK21新增特性

顺序集合(Sequenced Collections)提供了几个新的接口,用于实现有序的集合。在没有提供有序集合操作之前,我们进行集合的序列操作一般如下First element Last elementList list.get(0) list.get(list.size() - 1)Deque deque.getFirst() deque.getLast()SortedSet sortedSet.f…

NOIP2024加赛6

让人家来打模拟赛,被吊打了吧。一签三计数,罚坐了。 草莓 简单贪心,随便贪就过了。点此查看代码 #include<bits/stdc++.h> using namespace std; #define rep(i,s,t,p) for(int i = s;i <= t;i += p) #define drep(i,s,t,p) for(int i = s;i >= t;i -= p) #ifde…

java小工具util系列5:java文件相关操作工具,包括读取服务器路径下文件,删除文件及子文件,删除文件夹等方法

java小工具util系列5:java文件相关操作工具,包括读取服务器路径下文件,删除文件及子文件,删除文件夹等方法@目录一、记录文件相关操作方法二、代码1.读取路径返回List<File>2.读取路径返回List<String>3.删除文件夹4.删除文件 一、记录文件相关操作方法 二、代…

一些再也不敢了的行为

前言:考完 CSP-S 2024 才总结出来的各种离谱错误。本文不讨论类似于在有环图上跑拓扑排序这种错误,直接说会见祖宗的行为。进入考场前检查好准考证和身份证等必要物品,笔者因为这个原因 \(2024\) 年联合省选被困在了门外。由于不是正式选手,最终被放了进去。如果当前电脑运…

什么是水鱼?三分钟教会你

"水鱼"是广西人最喜欢玩的酒桌游戏,它属于扑克牌的一种玩法,经过不断改良升级而来。如果你在广西不会水鱼,那喝酒就没有了灵魂。虽然广西名族很多,水鱼玩法不一样,但是同一个框架,内容不同而已。比如有些地方黑桃花色最大,有些地方红桃花色最大,这种一般玩2,…

Oracle Linux 9.5 正式版发布 - Oracle 提供支持 RHEL 兼容发行版

Oracle Linux 9.5 正式版发布 - Oracle 提供支持 RHEL 兼容发行版Oracle Linux 9.5 正式版发布 - Oracle 提供支持 RHEL 兼容发行版 Oracle Linux with Unbreakable Enterprise Kernel (UEK) & Red Hat compatible kernel (RHCK) 请访问原文链接:https://sysin.org/blog/o…

List集合按照由小到大排序或者由大到小排序

@目录背景原代码由小到大排序由大到小排序 背景原List<User>里面是无序的,比如从redis查找等情况,查出来的是无序的,现在想按照由小到大排序或者由大到小排序。原代码 List<User> list = new ArrayList<>(); list.add(new User(3, "c", new Dat…

pta两次大作业

PTA 两次大作业总结:详细分析与实践经验 前言 回顾这次的家具强电电路模拟程序大作业,它无疑是一次极具挑战的编程与设计经历。从最初简单的电路组件模拟,到后期复杂的多设备连接和精准的控制反馈,这个过程不仅让我掌握了许多技术技能,还在思维方式、问题解决能力以及系统…

mac安装maven3.8.8

问题描述 down了一个新应用, maven依赖总是加载不到, 本地仓库也能找到, 项目启动报错 org.apache.skywalking:apm-toolkit-trace:pom:5.0.0-RC-SNAPSHOT failed to transfer from http://0.0.0.0/ during a previous attempt. This failure was cached in the local repositor…

mac 安装maven

问题描述 down了一个新应用, maven依赖总是加载不到, 本地仓库也能找到, 项目启动报错 org.apache.skywalking:apm-toolkit-trace:pom:5.0.0-RC-SNAPSHOT failed to transfer from http://0.0.0.0/ during a previous attempt. This failure was cached in the local repositor…