ServiceManager接收APP的跨进程Binder通信流程分析

现在一起来分析Server端接收(来自APP端)Binder数据的整个过程,还是以ServiceManager这个Server为例进行分析,这是一个至下而上的分析过程。

在分析之前先思考ServiceManager是什么?它其实是一个独立的进程,由init解析init.rc文件并由它创建,要早于zygote进程,ServiceManager的main函数进程文件位于:framework/native/cmds/servicemanager/main.cpp
这个main函数运行意味着系统的SM进程开始运行了。下面是ServiceManager在init.rc中的描述。

下面是ServiceManager.rc文件

 

上面的rc文件描述说明servicemanager是一个系统的关键服务进程,不能重启的,因为 它一旦重启,将会restart如healthd,zygote, audioserver, surfaceflinger, inputflinger等一系列重要的其它进程。

下面先给出一个非常重要的结论,就是ServiceManager的父类继承关系,最顶层的父类是IServiceManager和BBinder,后面的源码分析的时候这个很有用,否则看不懂代码。

 

 

大家知道,每个android系统关键进程或app进程启动时会先创建binder,我们从SM的进程代码进行分析,如下:

main.cpp->main()-->char* driver="/dev/binder";//启动初始化binder驱动:普通app进程是通过ProcessState::self()->new ProcessState()来启动进程然后在构造函数中初始化binder,//与SM启动创建binder一样sp<ProcessState> ps = ProcessState::initWithDriver(driver);-->return new ProcessState();//在构造函数中open_driver(driver);//实例化ServiceManagersp<ServiceManager> manager = new ServiceManager(std::make_unique(Access));//设置服务端的BBinder对象//所以manager就是一个BBinder对象:因为class ServiceManager: public os:BnServiceManager{}//而BnServiceManager继承关系是: class BnServiceManager: public ::android::BnInterface<IServiceManager>{ }//BnInterface的继承关系(位于Interface.h): class BnInterface: public BBinder{ }//综上,manager就是一个BBinder对象。//注意BnServerManager.h这个头文件是需要根据IServerManager.aidl文件自己去编译生成的(//可以使用AIDL命令去编译)IPCThreadState::self()->setTheContextObject(manager); -->IPCThreadState.cpp->self():-->return new IPCThreadState(); //创建线程对象IPCThreadState.cpp->setTheContextObject(sp<BBinder> obj):-->the_context_object = obj;//设置成为binder驱动的context Manager,成为上下文的管理者,ps代表SM进程ps->becomeContextManager(nullptr, nullptr);//重点在下面://通过Looper epoll机制处理binder事务sp<Looper> looper = Looper::prepare(false);//设置callbackBinderCallback::setupTo(looper);//向Binder驱动发送BC_ENTER_LOOPER事务请求,并获得binder设备的文件描述符//监听binder_fd文件描述符的数据变化-->IPCThreadState::self()->setupPolling(&binder_fd);looper->addFd(binder_fd, Looper::POLL_CALLBACK,Looper::EVENT_INPUT, cb, nullptr);-->//当binder驱动发来消息后:调用下面的回调事件处理:int handleEvent(int fd int event){//从binder驱动接收到消息并处理。IPCThreadState::self()->handlePolledCommands();-->do //当读 缓存中数据未消费完时,持续循环读{result = getAndExecuteCommand();-->result = talkWithDriver();//从Binder驱动读入数据mIn-->cmd = mIn.readInt32(); //从数据中读取BR响应码-->executeCommand(cmd);-->case BR_TRANSACTION: //走这个分支//对SM来说,使用the_context_object这个BBinder对象//而transact应该在SM的父类中定义即BBinder-->the_context_object->transact(tr.code,buffer,&reply,tr.flags);-->BBinder.cpp->transact()://这里注意,下面调用的其实是子类的onTransact(即BnServiceManager.h中定义,但这只是一个头文件)//更进一步分析,其实是调用由IServiceManager.aidl生成的Bn端的cpp文件中(需要自己编译)--> onTransact();-->IServiceManager.cpp->BnServiceManager::onTransact():-->getService(); //其实是它的孩子即ServiceManager的接口-->ServiceManager.cpp->getService(name, sp<IBinder> * outBinder);//返回Binder*outBinder = tryGetService(name, true);-->std::map<string16, sp<IBinder>> mNameToService; //维持一张表--> auto it = mNameToService.find(name);service = &(it->second); //取出Service;out = service->binder;return out;}while(mIn.dataPosition() < mIn.dataSize());  //当我们清空执行完所有的命令后,最后处理BR_DECREFS和BR_RELEASEProcessPendingDerefs();FlushCommands();  }

上面分析的应该比较详细了,下面再总结下整体流程:

总结:

  1. binder驱动收到请求后, SM的looperCallBack回调会进行处理(BinderCallback- >handleEvent)
  2. 然后调用IPCThread::self()->handlePolledCommands()解读命令,向上分发
  3. the_context_object(注意这是一个BBinder对象)即BBinder->transact();
  4. 转交给BBinder的子类BnServiceManager.onTransact()处理,但这个是AIDL提供的代码,所以真正实现的是ServiceManager.getService();

最后再画一张图描述下整个过程:

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/84229.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Stable Diffusion 系列教程 | 如何获得更高清优质的AI绘画

目录 1 高清修复 1.1 原理 1.2 基本操作 1.3 优缺点 2 UpScale 放大脚本 2.1 原理 2.2 基本操作 2.3 优缺点 3 附加功能放大 3.1 原理 3.2 基本操作 3.3 优缺点 优化出图质量&#xff0c;产出更高清&#xff0c;分辨率更高&#xff0c;更有细节的绘画作品呢&#x…

算法笔记:KD树

1 引入原因 K近邻算法需要在整个数据集中搜索和测试数据x最近的k个点&#xff0c;如果一一计算&#xff0c;然后再排序&#xff0c;开销过大 引入KD树的作用就是对KNN搜索和排序的耗时进行改进 2 KD树 2.1 主体思路 以空间换时间&#xff0c;利用训练样本集中的样本点&…

[C#][原创]操作注册表一些注意点

C#注册表只需要引入 using Microsoft.Win32; C#注册表操作都是通过2个类Registry和RegistryKey进行所有操作。但是有些基本注意事项经常忘记&#xff0c;不常用就很容易忘记。 第一&#xff0c;打开注册表&#xff0c;第2个bool参数问题&#xff1a; RegistryKey key Regi…

Redis7之介绍(一)

1. 是什么 Redis:REmote Dictionary Server(远程字典服务器&#xff09; Remote Dictionary Server( 远程字典服务)是完全开源的&#xff0c;使用ANSIC语言编写遵守BSD协议&#xff0c;是一个高性能的Key-Value数据库提供了丰富的数据结构&#xff0c;例如String、Hash、List、…

K8S如何部署ZooKeeper以及如何进行ZooKeeper的平滑替换

前言 在之前的章节中&#xff0c;我们已经成功地将Dubbo项目迁移到了云环境。在这个过程中&#xff0c;我们选择了单机ZooKeeper作为注册中心。接下来&#xff0c;我们将探讨如何将单机ZooKeeper部署到云端&#xff0c;以及在上云过程中可能遇到的问题及解决方案。 ZooKeeper…

设计模式三原则

1.1单一职责原则 C 面向对象三大特性之一的封装指的就是将单一事物抽象出来组合成一个类&#xff0c;所以我们在设计类的时候每个类中处理的是单一事物而不是某些事物的集合。 设计模式中所谓的单一职责原则&#xff0c;就是对一个类而言&#xff0c;应该仅有一个引起它变化的原…

Docker容器:dockerfile创建 LNMP 服务+Wordpress 网站平台

文章目录 一.环境及准备工作1.项目环境2.服务器环境3.任务需求 二.Linux 系统基础镜像三.docker构建Nginx1.建立工作目录上传安装包2.编写 Dockerfile 脚本3.准备 nginx.conf 配置文件4.生成镜像5.创建自定义网络6.启动镜像容器7.验证 nginx 四.docker构建Mysql1. 建立工作目录…

剪枝基础与实战(2): L1和L2正则化及BatchNormalization讲解

1. CIFAR10 数据集 CIFAR10 是深度学习入门最先接触到的数据集之一,主要用于图像分类任务中,该数据集总共有10个类别。 图片数量:6w 张图片宽高:32x32图片类别:10Trainset: 5w 张,5 个训练块Testset: 1w 张,1 个测试块Pytorch 集成了很多常见数据集的API, 可以通过py…

商品搜索网:连接您与各类商品的桥梁

导语&#xff1a;在如今信息爆炸的时代&#xff0c;购物已经不再是传统的实体店购买&#xff0c;而是通过互联网实现的线上购物方式。而要实现高效的线上购物&#xff0c;商品搜索引擎则成为我们的得力助手。作为国内垂直的商品搜索之一&#xff0c;为中国用户提供全面的数码电…

java八股文面试[Spring]——如何实现一个IOC容器

什么是IOC容器 IOC不是一种技术&#xff0c;只是一种思想&#xff0c;一个重要的面向对象编程的法则&#xff0c;它能指导我们如何设计出松耦合&#xff0c;更优良的程序。传统应用程序都是由我们在类内部主动创建依赖对象&#xff0c;从而导致类与类之间高耦合&#xff0c;难于…

elementui table 在浏览器分辨率变化的时候界面异常

异常点&#xff1a; 界面显示不完整&#xff0c;表格卡顿&#xff0c;界面已经刷新完成&#xff0c;但是表格的宽度还在一点一点变化&#xff0c;甚至有无线延伸的情况 思路&#xff1a; 1. 使用doLayout 这里官方文档有说明&#xff0c; 所以我的想法是&#xff0c;监听浏览…

数据通信——TCP(三次握手及基础特性)

引言 TCP&#xff08;传输控制协议&#xff09;&#xff0c;不像之前的UDP那样&#xff0c;因为这个协议要将很多复杂的东西&#xff0c;所以这次的特性是简单的特性&#xff0c;后续会讲一些复杂难懂的知识&#xff0c;这次先说一些TCP明显的特性 面向连接 TCP提供了对连接的管…