【原创】xenomai环境下开源实时数控系统LinuxCNC编译安装

news/2024/12/22 14:59:49/文章来源:https://www.cnblogs.com/wsg1100/p/18622137

linuxcnc 在xenomai下的构建简单记录,参考链接https://www.linuxcnc.org/docs/devel/html/code/building-linuxcnc.html

1.环境

软硬件环境

桌面环境:Ubuntu 24.04+xenomai3.3

硬件:rk3588(nanoPi R6/T6)

对xenomai内核要求

要在使linuxcnc在xenomai上运行,内核配置Local version必须是-xenomai,即CONFIG_LOCALVERSION="-xenomai",这样linuxcnc编译配置时才能识别xenomai环境,否则不实时。

General setup  --->                                                                                             (-xenomai) Local version - append to kernel release

使用uname -a命令确认:

image-20241221223929726

对xenomai库要求

如果你需要编译生成linuxcnc debian安装包,由于生成linuxcnc debian安装包过程中会处理库的安装依赖生成依赖信息,这就要求xenomai库文件libcobalt.so属于某个debian包,通俗的说要求我们的xenomai库也是通过debian包安装的,而不是直接make install这种方式直接安装的,否则会产生如下类似错误。

dpkg-shlibdeps: error: no dependency information found for /usr/xenomai/lib/libcobalt.so.2 (used by debian/linuxcnc-uspace/usr/lib/libuspace-xenomai.so.0)

解决方式1:xenomai通过构建debian库来安装,可以参考本博客其他文章编译构建xenomai库debian安装包

解决方式2:找到Debian/rules,打开之后找到override_dh_shlibdeps,在dpkg-shlibdeps那一行最后加上如下选项:

--dpkg-shlibdeps-params=--ignore-missing-info

以忽依赖信息。

安装依赖包

先安装依赖的工具和库,我遇到的有这些,不同的环境有差别,出错再对应安装不具备的即可。

 sudo apt install pkg-config build-essential  automake libtool m4 autoconf libudev-dev libmodbus-dev libusb-1.0-0-dev libgpiod-dev libglib2.0-dev libgtk-3-dev yapps2 intltool libboost-dev python3-dev libboost-python-dev  gtkwave bwidget tclx libeditreadline-dev python3-pip python3-tk libglu1-mesa-dev libxmu-dev asciidoc devscripts debhelper libtirpc-dev libtirpc-common tcl8.6-dev tk8.6-dev python3-opengl python3-full

2.本地编译linuxcnc

首先需要安装该工具( sudo apt install git )然后拉取代码,如下所示:

$ git clone https://github.com/LinuxCNC/linuxcnc.git linuxcnc-source-dir

配置

拉代码生成配置文件

$ git clone https://github.com/LinuxCNC/linuxcnc.git linuxcnc-source-dir
$ cd linuxcnc-source-dir/src
$ ./autogen.sh

生成得configure,它需要许多可选参数。通过运行以下命令列出configure的所有参数:

$ cd linuxcnc-source-dir/src
$ ./configure --help

最常用的参数是:

  • --with-realtime=uspace

    为任何实时平台或非实时平台构建。生成的 LinuxCNC 可执行文件将在带有 Preempt-RT 补丁的 Linux 内核(提供实时机器控制)和普通(未打补丁)Linux 内核(提供 G 代码模拟,但不提供实时机器控制)上运行。

    如果安装了 Xenomai(通常来自 libxenomai-dev 软件包)或 RTAI(通常来自名称以 “rtai-modules ”开头的软件包)的开发文件,也将启用对这些实时内核的支持。

  • --with-realtime=/usr/realtime-$VERSION

    使用旧的“内核实时”模型构建 RTAI 实时平台。这要求您在/usr/realtime-$VERSION中安装 RTAI 内核和 RTAI 模块。生成的 LinuxCNC 可执行文件将仅在指定的 RTAI 内核上运行。

  • --enable-build-documentation

    除了可执行文件之外,还构建文档。此选项会显着增加了编译所需的时间,因为构建文档非常耗时。如果不需要构建文档,则可省略此参数。

  • --disable-build-documentation-translation

    禁用为所有可用语言构建翻译文档。翻译文档的构建需要花费大量时间,因此如果不是真正需要的话,建议跳过它。

$ ./configure --with-realtime=uspace --enable-build-documentation
....
checking for xeno-config... /usr/bin/xeno-config
checking for realtime API(s) to use... uspace+xenomai
...
######################################################################
#                LinuxCNC - Enhanced Machine Controller              #
######################################################################
#                                                                    #
#   LinuxCNC is a software system for computer control of machine    #
#   tools such as milling machines. LinuxCNC is released under the   #
#   GPL.  Check out http://www.linuxcnc.org/ for more details.       #
#                                                                    #
#                                                                    #
#   It seems that ./configure completed successfully.                #
#   This means that RT is properly installed                         #
#   If things don't work check config.log for errors & warnings      #
#                                                                    #
#   Next compile by typing                                           #
#         make                                                       #
#         sudo make setuid                                           #
#          (if realtime behavior and hardware access are required)   #
#                                                                    #
#   Before running the software, set the environment:                #
#         . (top dir)/scripts/rip-environment                        #
#                                                                    #
#   To run the software type                                         #
#         linuxcnc                                                   #
#                                                                    #
######################################################################

配置编译

$ make -j $(nproc)
...
Linking rtapi_app
Linking libuspace-xenomai.so.0
....

之后,如果只想构建 LinuxCNC 的特定部分,可以在make命令行上命名想要构建的部分。例如,正在开发名为froboz的组件,则可以通过运行以下命令来构建其可执行文件:

$ cd linuxcnc-source-dir/src 
$ make ../bin/froboz

如果在支持实时的系统上运行(请参阅下面的实时部分),此时需要一个额外的构建步骤:

$ sudo make setuid

成功构建 LinuxCNC 后,就可以运行测试了:

$ source ../scripts/rip-environment
$ runtestspi@NanoPi-R6S:~/linuxcnc-source-dir/src$ linuxcnc
LINUXCNC - 2.10.0~pre0
Machine configuration directory is '/home/pi/linuxcnc-source-dir/configs/sim/axis'
Machine configuration file is 'canterp.ini'
Starting LinuxCNC...
linuxcncsvr (61089) emcsvr: machine 'Canterp Example'  version '1.1'
linuxcnc TPMOD=tpmod HOMEMOD=homemod EMCMOT=motmod
Note: Using XENOMAI (posix-skin) realtime
milltask (61103) task: machine 'Canterp Example'  version '1.1'
halui (61105) halui: machine 'Canterp Example'  version '1.1'
Found file(LIB): /home/pi/linuxcnc-source-dir/lib/hallib/basic_sim.tcl
....

这也可能会失败!阅读整个文档,尤其是设置测试环境部分。

3. 构建debian安装包

构建 Debian 软件包时,LinuxCNC 从源代码编译并包含依赖信息,同时可选地包含文档(这会增加构建时间,但可以跳过)。编译后的 LinuxCNC 存储在 .deb 文件中,该文件可安装在相同架构的任何计算机上。安装后,LinuxCNC 可在 /usr/bin/usr/lib 中运行,如同其他系统软件。

此构建模式主要用于:

  • 打包软件以交付给最终用户。
  • 为未安装构建环境或无法访问互联网的计算机构建软件。

构建 Debian 软件包需要 dpkg-buildpackage 工具(由 dpkg-dev 提供),并确保所有必要的脚本都已安装,这通常通过安装 build-essential 虚拟包来实现。

$ sudo apt-get install build-essential 

构建 Debian 软件包还要求安装所有特定于软件包的构建依赖项。安装所有构建依赖项的最直接方法是执行(从同一目录):

$ cd linuxcnc-source-dir
$ ./debian/configure
$ sudo apt-get build-dep .

可以使用dpkg-checkbuilddeps来检查依赖是否满足 (也来自作为构建必需依赖项的一部分安装的 dpkg-dev 软件包)程序来完成其工作(请注意,它需要从linuxcnc-source-dir目录运行:

$ dpkg-checkbuilddeps

满足这些先决条件后,构建 Debian 软件包包括两个步骤。

第一步是通过运行以下命令从 git 存储库生成 Debian 包脚本和元数据:

$ cd linuxcnc-dev
$ ./debian/configure

Note: debian/configure根据您构建的平台接受参数,

它默认在用户空间(“uspace”)中运行 LinuxCNC,期望 preempt_rt 内核将延迟降至最低。

  • no-docs:跳过构建文档。
  • uspace:配置为 Preempt-RT 实时或非实时(兼容两者),或使用 noauto 禁用自动检测。

配置 Debian 软件包脚本和元数据后,通过运行dpkg-buildpackage来构建软件包:

$ dpkg-buildpackage -b -uc -j$(nproc)

Note:

要构建的典型 Debian 软件包,您可以运行不带任何参数的 dpkg-buildpackage。如上所述,该命令传递了两个额外的选项。与所有优秀的 Linux 工具一样,手册页包含man dpkg-buildpackage的所有详细信息。

  • -uc

    不要对生成的二进制文件进行签名。仅当您想将软件包分发给其他人时,您才需要使用自己的 GPG 密钥对软件包进行签名。未设置该选项并且无法对包进行签名不会影响 .deb 文件。

  • -b

    这对于避免编译与硬件无关的内容非常有帮助,对于 LinuxCNC 来说就是文档。无论如何,该文档可以在线获取。

如果您在编译时遇到困难,请在线查看 LinuxCNC 论坛。目前正在出现的是对 DEB_BUILD_OPTIONS 环境变量的支持。将其设置为

  • nodocs

    要跳过构建文档,最好使用-B标志来 dpkg-buildpackage。

  • nocheck

    跳过 LinuxCNC 构建过程的自检。这可以节省一些时间并减少对某些可能不适用于您的系统的软件包(尤其是 xvfb)的需求。您不应该设置此选项来对构建按预期执行有额外的信心,除非遇到依赖项方面的困难。

环境变量可以与命令的执行一起设置,例如

DEB_BUILD_OPTIONS=nocheck dpkg-buildpackage -uc -B

4.安装构建的Debian软件包

Debian 软件包可以通过其 .deb 扩展名来识别。安装它的工具dpkg是每个 Debian 安装的一部分。 dpkg-buildpackage创建的 .deb 文件可以在 linuxcnc-source-dir 上面的目录中找到,即在..中。要查看包中提供了哪些文件,请运行

dpkg -c ../linuxcnc-uspace*.deb

LinuxCNC 的版本将是文件名的一部分,旨在与星号匹配。列出的文件可能太多,无法显示在您的屏幕上。如果您无法在终端中向上滚动,请添加| more该命令的| more是使其输出通过所谓的“寻呼机”传递。用“q”退出。

要安装软件包,请运行

sudo dpkg -i ../linuxcnc*.deb

5. latency-test

通过命令行测试

pi@NanoPi-R6S:~$ latency-test
Note: Using XENOMAI (posix-skin) realtime

image-20241201140242342

测试的是cpu0的实时性,会差一些,以隔离的cpu核latency测试为准。此时可以通过cat /proc/xenomai/sched/threads确认已经在xenomai内核调度运行。

pi@NanoPi-R6S:~$ cat /proc/xenomai/sched/threads
CPU  PID    CLASS  TYPE      PRI   TIMEOUT       STAT       NAME0  0      idle   core       -1   -             R          [ROOT/0]1  0      idle   core       -1   -             R          [ROOT/1]2  0      idle   core       -1   -             R          [ROOT/2]3  0      idle   core       -1   -             R          [ROOT/3]4  0      idle   core       -1   -             R          [ROOT/4]5  0      idle   core       -1   -             R          [ROOT/5]6  0      idle   core       -1   -             R          [ROOT/6]7  0      idle   core       -1   -             R          [ROOT/7]0  126087 rt     cobalt      0   -             X          rtapi_app0  126090 rt     cobalt     98   43us          D          rtapi_app0  126091 rt     cobalt     97   255us         D          rtapi_app
pi@NanoPi-R6S:~$ cat /proc/xenomai/sched/stat
CPU  PID    MSW        CSW        XSC        PF    STAT       %CPU  NAME0  0      0          2971573    0          0     00018008   83.6  [ROOT/0]1  0      0          0          0          0     00018000  100.0  [ROOT/1]2  0      0          0          0          0     00018000  100.0  [ROOT/2]3  0      0          0          0          0     00018000  100.0  [ROOT/3]4  0      0          0          0          0     00018000  100.0  [ROOT/4]5  0      0          0          0          0     00018000  100.0  [ROOT/5]6  0      0          0          0          0     00018000  100.0  [ROOT/6]7  0      0          0          0          0     00018000  100.0  [ROOT/7]0  126087 1          1          5          0     000680c0    0.0  rtapi_app0  126090 1          1759321    1759322    0     00048044   16.0  rtapi_app0  126091 1          43964      43964      0     00048044    0.4  rtapi_app

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/856812.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024-2025-1 20241301 《计算机基础与程序设计》第十三周学习总结

|这个作业属于哪个课程|2024-2025-1-计算机基础与程序设计| |这个作业要求在哪里|2024-2025-1计算机基础与程序设计第一周作业| |这个作业的目标|<复习知识,巩固基础>| |作业正文|https://www.cnblogs.com/HonJo/p/18622132| 一、教材学习内容 (一)网络 根据提供的搜索…

【ByPass】最新发现绕过浏览器隔离技术的攻击方法

BaizeSec 白泽安全实验室 2024年12月10日 15:26 北京 在网络安全领域,浏览器隔离技术一直被视为对抗网络钓鱼和基于浏览器的攻击的有效手段。然而,根据Mandiant的最新研究,攻击者已经找到了一种利用QR码绕过浏览器隔离的攻击方法,从而能够从远程服务器向受害设备发送恶意数…

【ByPass】绕过EDR系统检测的新型攻击技术

近日,Akamai安全研究团队披露了Windows UI Automation框架的一种新型攻击技术,该技术能够绕过端点检测和响应(EDR)系统检测,引发了广泛的安全担忧。研究发现,攻击者通过诱骗用户运行一个使用UI Automation的程序,可以实现隐蔽的命令执行,进而窃取敏感数据、重定向浏览器…

Origin绘图教程 | 灵活选择绘图数据

主要内容:使用多个工作表的数据绘图 + 使用另一列的数据作为设定图形颜色的参数 + 使用多个不相邻列绘图 使用多个工作表的数据绘图 1. 使用在 第二课: 图形模板与批量绘图中保存的项目文件。选择任意工作簿, 并确认没有任何数据列被选择. 你可以点击数据列外的灰色区域,以取…

第十三周学习总结

学期2024-2025- 学号20241414 《计算机基础与程序设计》第十三周学习总结 作业信息这个作业属于哪个课程 <班级的链接>2024-2025-1-计算机基础与程序设计这个作业要求在哪里 <作业要求的链接>2024-2025-1计算机基础与程序设计第一周作业这个作业的目标 文件操作作业…

【AI+物联网】AIOT :打造边云协同的物联网新模式

在当今数字化浪潮中,AIOT(人工智能物联网)与边缘智能宛如一对闪耀的双子星,正以前所未有的速度重塑着各个行业,为人们的生活与生产带来翻天覆地的变革。 一、AIOT:万物互联的智慧基石 AIOT 作为人工智能技术与物联网深度融合的结晶,为智能制造搭建起关键架构。物联网凭借…

第十章

例10.1点击查看代码 import numpy as np import statsmodels.api as sm import pylab as pltdef check(d):x0 = d[0]; y0 = d[1]; d = {x:x0, y:y0}re = sm.formula.ols(y~x, d).fit()print(re.summary())print(re.outlier_test())print(残差的方差, re.mse_resid)pre=re.get_…

Javascript元编程

元编程 (Metaprogramming) 是编写操作程序本身的程序的艺术,允许程序通过操作代码结构和行为来自我调整。元编程的核心是增强代码灵活性和动态性,典型的元编程功能包括拦截、修改、生成代码等 文章首发博客,点击查看 扫码关注公众号,查看更多优质文章引文:引用维基百科元编…

23粘性定位-z index-浮动-浮动练习

一、粘性定位 - sticky 另外还有一个定位的值是position:sticky,比起其他定位值更新一些。 sticky是一个大家期待已久的属性; 可以看作是相对定位和固定(绝对)定位的结合体; 它允许被定位的元素表现得像相对定位一样,直到它滚动到某个阈值点; 当达到这个阈值点时,就会变…

iPhone越狱版和免越狱版iMessages群发,iMessages短信,imessages推信群发实现原理

Apple公司全线在mac os与ios两个操作系统上内置了FaceTime与iMessage两个应用。完美替代运营商的短信与电话。并且FaceTime与iMessage的帐号不仅仅与Apple ID 绑定,同时也与使用这Apple ID的手机号码绑定,这样的漏洞自然给无孔不入的群发垃圾信息商们提供了后门。这样iPhone的…

IDEA Spring MVC配置.

参考1 https://blog.csdn.net/qq_74329022/article/details/138326488 示例 省赛 easyspring 配置。