【FreeRTOS】【STM32】中断详细介绍

文章目录

  • 一、三种优先级的概念辨析
    • 1. 先理清楚两个概念:CPU 和 MPU
    • 2. Cortex-M3 内核与 STM32F1XX 控制器有什么关系
    • 3. 优先级的概念辨析
      • ① Cortex-M3 内核和 STM32F1XX 的中断优先级
      • ② FreeRTOS 的任务的优先级
  • 二、 Cortex-M3 内核的中断优先级
    • 1. 中断编号
    • 2. 优先级与编号的关系
    • 3. 优先级配置寄存器
  • 三、STM32F1XX 的中断优先级
    • 1. 中断数量和编号
    • 2. 中断优先级配置
  • 三、SVC 和 PendSV 详解
    • 1. SVC
      • ① SVC 是什么
      • ② SVC 的中断优先级
      • ③ 使用 SVC 的好处
    • 2. PendSV
      • ① PendSV 是什么
      • ② PendSV 的应用
  • 四、运行在 STM32 上的 FreeRTOS 中断优先级的配置
    • 1. 中断优先级分组
    • 2. FreeRTOS 内核优先级
      • ① 定义
      • ② 内核优先级的作用范围
    • 3. 临界段保护的中断优先级
      • ① 临界段保护就是关中断
      • ② 如何关中断
  • 后记

一、三种优先级的概念辨析

本篇文章将对下面三种优先级进行概念辨析:

  • Cortex-M3 内核的中断优先级
  • STM32F1XX 控制器的中断优先级
  • FreeRTOS 的任务的优先级

1. 先理清楚两个概念:CPU 和 MPU

  • “CPU”:“Central Processing Unit”,即中央处理器。它是计算机系统中的主要组件,负责执行指令并进行数据处理和计算。CPU通常由控制单元、算术逻辑单元(ALU)和寄存器等部分组成。

  • “MPU:”“Microprocessor Unit”,微处理器单元。MPU通常用来指代一种单芯片的微处理器,它集成了处理器核心、内存、接口和其他外设等功能,常用于嵌入式系统和嵌入式设备。MPU可以被视为一种较小规模的计算机系统。

2. Cortex-M3 内核与 STM32F1XX 控制器有什么关系

先看看较为官方的解释:

Cortex-M3内核是一种由Arm公司设计的低功耗、高性能的32位RISC处理器内核。它具有较高的执行效率和能效,专门针对嵌入式系统设计。

STMicroelectronics的STM32F1系列是十分流行的Cortex-M3微控制器系列,提供了多个型号和配置选项,包括STM32F103、STM32F107等

简而言之,Cortex-M3 内核是 ARM 这个公司设计的一种 CPU 架构,而 STM32F1XX 控制器是 ST 公司在 CPU 上连接了片上外设、存储器、接口的一种 MPU,也就是 Cortex-M3 芯片
在这里插入图片描述
此图片来自《CM3 权威指南》一书。

3. 优先级的概念辨析

① Cortex-M3 内核和 STM32F1XX 的中断优先级

由于芯片制造商可以对 Cortex-M3 内核进行裁剪(只使用 Cortex-M3 的一部分),所以在内核方面, STM32F1XX 芯片实际上使用了完整的 Cortex-M3 内核的一部分。

所以这两者的优先级是相通的。(注意我使用的是“相通”,而不是“相同”,这意味着 STM32F1XX 芯片的各种设置可以在 Cortex-M3 架构的规定下由芯片厂商灵活自行设计)

② FreeRTOS 的任务的优先级

FreeRTOS 是运行于 STM32 芯片上的操作系统,其任务的优先级决定了设置的各类任务的执行顺序,是任务之间的优先级。

任务之间的优先级限制于 FreeRTOS 框架内,而 FreeRTOS 内核又被限制于 STM32 框架上。

二、 Cortex-M3 内核的中断优先级

(注:以下混合使用“中断”和“异常”这俩个术语,意思一致)

1. 中断编号

  • ARM 为 Cortex-M3 内核 一共设计了 255 个中断,编号为 1~255,而 0 表示没有异常
  • 这里的编号单纯只是这些中断的一个序号,而不是优先级
  • 编号 1-15 是内核中产生的、而 16-255 属于来自内核外

2. 优先级与编号的关系

  • 对于编号为 1-3 的中断,其优先级是固定的,从 -3 到 -1
  • 编号为 4-255 的中断,其优先级都是可以编程的
    在这里插入图片描述
    在这里插入图片描述

3. 优先级配置寄存器

  • Cortex-M3 内核最多可以使用 8 位来表示优先级,共 256 级( STM32F1 使用了 4 位共 16 级)
  • 抢占优先级最多为 128 级
  • Cortex-M3 内核把这 8 位还分成两半,高位的一半配置抢占优先级,低位的一半配置子优先级
    • 当使用 8 位时,至少有 1 位表示子优先级
      在这里插入图片描述

三、STM32F1XX 的中断优先级

1. 中断数量和编号

  • STM32F1XX 只使用了 Cortex-M3 内核中定义的六十几个中断(深色代表内核中断):
    在这里插入图片描述
    在这里插入图片描述
    等等等等
  • 可以看到,编号 0 及以上的中断的优先级都是可编程的

2. 中断优先级配置

  • STM32F1XX 使用了 4 位来表示中断优先级
    • 不管使用多少位,都是 MSB 对齐的
    • 所以实际上是使用优先级配置寄存器的高 4 位进行中断优先级配置
  • 也有抢占优先级和子优先级之分
抢占优先级子优先级
0 位4 位
1 位3 位
2 位2 位
3 位1 位
4 位0 位

三、SVC 和 PendSV 详解

  • “SVC”:SVC是"Supervisor Call"的缩写,也被称为系统服务调用或简称为系统调用。
  • “PendSV”:PendSV是"Pending Supervisor Call"的缩写,用于可悬起系统调用。

1. SVC

① SVC 是什么

用户程序(基于 FreeRTOS 之上的程序)通过 SVC 使用系统服务函数。

一个例子是当启动任务调度器的时候, FreeRTOS 通过 SVC 启动第一个任务,详见:【学习日记】【FreeRTOS】调度器函数实现详解

② SVC 的中断优先级

实际上,在 FreeRTOS 中并未显式配置 SVC 的中断优先级。

我们可以开启调试查看,可以看到默认优先级是 0:
在这里插入图片描述
在这里插入图片描述

③ 使用 SVC 的好处

  1. 操作系统(OS)负责控制具体的硬件,使用户程序从控制硬件的繁文缛节中解脱出来。
  2. OS的代码经过充分的测试,提高系统的健壮性和可靠性。
  3. 用户程序无需在特权级下执行,避免用户程序误操作导致系统瘫痪的风险。
  4. 通过SVC的机制,使用户程序与硬件无关,简化了开发难度和繁琐度,使应用程序跨硬件平台移植成为可能。
  5. 应用程序只需了解操作系统提供的应用编程接口(API),并使用SVC提出请求,而无需了解硬件的操作细节。

2. PendSV

① PendSV 是什么

可悬起的系统调用,顾名思义,是可以像普通的中断一样被悬起的中断。也就是触发后如果优先级不够,会等到时机合适再执行。

在 FreeRTOS 默认配置为优先级最低的 15。

② PendSV 的应用

在 FreeRTOS 中,被用于任务的切换。

在 FreeRTOS 中,我们在 SysTick 中断中触发 PendSV,在 PendSV 进行任务切换。

如果不使用 PendSV 进行任务切换,那么当 SysTick 的优先级不是最低时:

  • 理想情况下,任务A 执行一段时间后进入 SysTick 中断,在 SysTick 中断中进行上下文切换到任务B
    在这里插入图片描述

  • 糟糕的情况是,任务A 执行一段时间后进入了一个中断,在中断中又进入到 SysTick 中断,并在其中尝试上下文切换,也就是切换到主线程中,但是第一个中断还未执行完毕(这会导致 Usage Fault,因为其使中断执行一半就跳会到主线程,如果允许这样做系统将没有实时性的保证)
    在这里插入图片描述
    如果使用了 PendSV,则可以使上下文切换的动作暂时搁置,先执行完中断再进行上下文的切换。

不过,值得深思的是,在 FreeRTOS 的默认配置中, SysTick 的中断优先级被配置为最低的 15,这意味着其不能打断任何的中断,那么使用 PendSV 可能有其他更充分的理由。

四、运行在 STM32 上的 FreeRTOS 中断优先级的配置

1. 中断优先级分组

使用分组 4,也就是 16 级的抢占优先级、0 级的子优先级:

NVIC_PriorityGroupConfig( NVIC_PriorityGroup_4 );

2. FreeRTOS 内核优先级

① 定义

FreeRTOSConfig.h中,由 configKERNEL_INTERRUPT_PRIORITY 定义:

  • configPRIO_BITS:使用 4 位来表示优先级
  • configLIBRARY_LOWEST_INTERRUPT_PRIORITY:配置内核优先级为最低级 15 级
  • configKERNEL_INTERRUPT_PRIORITY:将最低优先级左移,使 MSB 对齐
#define configPRIO_BITS       		4//中断最低优先级
#define configLIBRARY_LOWEST_INTERRUPT_PRIORITY			15#define configKERNEL_INTERRUPT_PRIORITY 		( configLIBRARY_LOWEST_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )

② 内核优先级的作用范围

那么这个内核优先级究竟是谁在用呢?实际上就是 SysTick 中断和 PendSV 中断在使用。
SysTick 用于时间片轮转、PendSV 用于上下文切换:

#define portNVIC_PENDSV_PRI					( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 16UL )
#define portNVIC_SYSTICK_PRI				( ( ( uint32_t ) configKERNEL_INTERRUPT_PRIORITY ) << 24UL )/* Make PendSV and SysTick the lowest priority interrupts. */portNVIC_SYSPRI2_REG |= portNVIC_PENDSV_PRI;portNVIC_SYSPRI2_REG |= portNVIC_SYSTICK_PRI;

3. 临界段保护的中断优先级

① 临界段保护就是关中断

  • 之前提到过 FreeRTOS 的临界段保护,进入临界段也就是关中断。
    在这里插入图片描述

② 如何关中断

  • 关中断是通过写 basepri 进行操作的:
    详情见【学习日记】【FreeRTOS】临界段的保护
static portFORCE_INLINE void vPortRaiseBASEPRI( void )
{
uint32_t ulNewBASEPRI = configMAX_SYSCALL_INTERRUPT_PRIORITY;__asm{/* Set BASEPRI to the max syscall priority to effect a criticalsection. */msr basepri, ulNewBASEPRIdsbisb}
}
  • basepri 是 MSB 对齐(在 STM32F1 中,basepri 是八位的寄存器,可只使用其中某几位,MSB 对齐指最高位对齐,也就是当只使用其中某几位时从最高位开始用,低位不管)用法和优先级配置寄存器类似:
    在这里插入图片描述

  • basepri 设定为大于其值的中断都会被屏蔽(此处的中断优先级指 STM32 的中断优先级而不是 FreeRTOS 我们为任务设定的优先级):
    在这里插入图片描述
    下面是 FreeRTOS 中进入临界段时对 basepri 的设置,设置为 5,也就是 FreeRTOS 进入临界段时,中断优先级 5-15 的中断都被屏蔽:

//系统可管理的最高中断优先级
#define configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY	5#define configMAX_SYSCALL_INTERRUPT_PRIORITY 	( configLIBRARY_MAX_SYSCALL_INTERRUPT_PRIORITY << (8 - configPRIO_BITS) )

后记

如果您觉得本文写得不错,可以点个赞激励一下作者!
如果您发现本文的问题,欢迎在评论区或者私信共同探讨!
共勉!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/87179.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Arcgis colorRmap

arcgis中colorRmap对应的名称&#xff1a; 信息来源&#xff1a;https://developers.arcgis.com/documentation/common-data-types/raster-function-objects.htm 在arcpy中使用方法&#xff1a; import arcpy cr arcpy.mp.ColorRamp("Yellow to Red")python中 ma…

06.DenseCap

目录 前言泛读摘要IntroductionRelated Work小结 精读模型模型构架全卷积定位层卷积锚点边界回归边界采样双线性插值 识别网络RNN 损失函数训练与优化 实验数据集&#xff0c;预处理DenseCap评价标准基线区域和图像级统计之间的差异RPN vs EdgeBoxesQualitative results 区域ca…

java: 无法访问org.springframework.boot.SpringApplication 错误的类文件

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 错误1&#xff1a; java: 无法访问org.springframework.boot.SpringApplication 错误的类文件: /D:/Software/env-java/apache-maven-3.6.1/repository/org/springframework/boot/spring-boot/3.1.2/sp…

基于DolphinScheduler的调度流程梳理及落地实践

目 录 01 背景‍ 02 主流调度引擎 ‍‍‍‍‍‍‍ 03 DolphinScheduler核心概念及调度过程‍‍‍‍‍‍ 04 开发实践 01‍ 背景‍‍ 随着数据中台概念及相关技术逐渐成熟、落地&#xff0c;不断有企业将其应用到自身业务中&#xff0c;将原本分散的各系统数据进行整合、分析…

数据结构(Java实现)-ArrayList与顺序表

什么是List List是一个接口&#xff0c;继承自Collection。 List的使用 List是个接口&#xff0c;并不能直接用来实例化。 如果要使用&#xff0c;必须去实例化List的实现类。在集合框架中&#xff0c;ArrayList和LinkedList都实现了List接口。 线性表 线性表&#xff08;lin…

Linux学习之DNS服务的原理

DNS服务一些理论 域名系统&#xff08;Domain Name System&#xff0c;DNS&#xff09;是互联网的核心应用服务&#xff0c;可以通过IP地址查询到域名&#xff0c;也可以通过域名查询到IP地址。 FQDN&#xff08;Full Qualified Domain Name&#xff09;是完全限定域名&#xf…

Smartbi电子表格软件版本更新,首次推出Excel轻应用和语音播放

Smartbi电子表格软件又又又更新啦&#xff01; 此次更新&#xff0c;首次推出了新特性——Excel轻应用和语音播报。另外&#xff0c;还对产品功能、Demo示例、配套文档进行了完善和迭代。 低代码开发Excel轻应用 可实现迅速发布web应用 业务用户的需求往往都处于“解决问题”…

一文便知 GO 中mongodb 的安装与使用

MONGDB 安装与使用 咱们来回顾一下上次分享的内容&#xff1a; 如何使用log 包log 包原理和具体实现自定义日志 要是对 GO 的日志包还有点兴趣的话&#xff0c;可以查看文章 GO的日志怎么玩 ? 今天咱们来玩个简单的 mongodb 的安装和使用 MONGODB介绍 MongoDB 是一个基于…

uniapp 使用permission获取录音权限

使用前&#xff0c;需要先配置权限 android.permission.RECORD_AUDIO

1. 卷积原理

① 卷积核不停的在原图上进行滑动&#xff0c;对应元素相乘再相加。 ② 下图为每次滑动移动1格&#xff0c;然后再利用原图与卷积核上的数值进行计算得到缩略图矩阵的数据&#xff0c;如下图右所示。 import torch import torch.nn.functional as Finput torch.tensor([[1, 2…

2023.08.27 学习周报

文章目录 摘要文献阅读1.题目2.重点3.引言4.方法5.实验结果6.结论 深度学习Majorization-Minimization算法1.基本思想2.要求3.示意图 总结 摘要 This week, I read a computer science on the prediction of atmospheric pollutants in urban environments based on coupled d…

【Go 基础篇】Go语言中的自定义错误处理

错误是程序开发过程中不可避免的一部分&#xff0c;而Go语言以其简洁和高效的特性闻名。在Go中&#xff0c;自定义错误&#xff08;Custom Errors&#xff09;是一种强大的方式&#xff0c;可以为特定应用场景创建清晰的错误类型&#xff0c;以便更好地处理和调试问题。本文将详…