AP Physics C Mechanics Chapter 7 Rotation 1

Vocabulary

  • Rigid body 刚体
  • Angular displacement 角位移 \(\Delta \theta\)
  • Angular velocity 角速度 \(\omega\)
  • Angular acceleration 角加速度 \(\alpha\)
  • Rotational kinetic energy 旋转动能 \(KE_{\text{rotational}}\)
  • Rotational inertia 转动惯量 \(I\)
  • Torque 扭矩 \(\tau\)

Angular Quantities

Angular displacement:

\[\boxed{\Delta \theta = \theta_{\text{final}} - \theta_{\text{initial}}} \]

Angular velocity:

\[\boxed{\omega = \frac {d \theta} {dt}} \]

Angular acceleration:

\[\boxed{\alpha = \frac {d \omega} {dt} = \frac {d^2 \theta} {dt^2}} \]

Equations

Valid only for uniformly accelerated motion (UAM):

\[\omega = \omega_0 + \alpha t \]

\[\omega^2 = \omega_0^2 + 2 \alpha \Delta \theta \]

Relationships Between Angular and Linear Quantities

Differentiate both sides of \(s = r \theta\) with respect to \(t\):

\[\boxed{v = r \omega} \]

Differentiate both sides again:

\[\boxed{a_{\text{tan}} = r \alpha} \]


In Chapter 3 we derived:

\[\boxed{a_{\text{radial}} = \frac {v^2} r = r \omega^2} \]

Translational KE \(\to\) Rotational KE

Divide the object into infinitely small pieces and sum the KE of each piece:

\[\begin{aligned}KE_{\text{rotational}} &= \int \frac 1 2 v^2 dm \\&= \frac 1 2 \int r^2 \omega^2 dm \\&= \frac 1 2 \omega^2 \int r^2 dm \\ \end{aligned}\]

This equation is very similar to \(KE = \frac 1 2 m v^2\), which is the equation for translational KE. \(\int r^2 dm\) is the angular analog of mass.

Just as mass is a measure of translational inertia, this integral is a measure of rotational inertia:

\[\boxed{I = \int r^2 dm} \]

(Which is the definition of rotational inertia)

We can rewrite the equation for rotational kinetic energy:

\[\boxed{KE_{\text{rotational}} = \frac 1 2 I \omega^2} \]

Example: Thin Rod

https://zhuanlan.zhihu.com/p/469279301

\[\begin{aligned}I &= \int r^2 dm \\&= \int_0^L r^2 \times \rho \times dr \\&= \frac 1 3 \rho L^3 \\&= \frac 1 3 m L^2 \\ \end{aligned}\]

Force \(\to\) Torque

We are expecting a rotational analog of \(\vec F = m \vec a\), so we start from the expression \(I \alpha\):

\[\begin{aligned}& I \alpha \\=& \int r^2 \alpha dm \\=& \int r a_{\tan} dm \\=& \int r dF_{\tan} \\=& r \times F_{\tan} \\ \end{aligned}\]

Therefore, it is very natural to define torque \(\tau\) as:

\[\tau = r F_{\tan} = r F \sin \theta \]

\[\boxed{\vec{\tau} = \vec{r} \times \vec{F}} \]

(A cross product!)

And we have the Newton's second law for rotational motion:

\[\boxed{\tau_{\text{net}} = I \alpha} \]

The unit of torque is newton meters (which is the same as joule), but it doesn't mean that torque is a kind of energy.

https://physics.stackexchange.com/questions/37881/why-is-torque-not-measured-in-joules

Fun fact: alternative units for torque are Joules/radian, though not heavily used.

This can be shown in the following part.

Work Done by an External Force

\[\begin{aligned}& dW \\=& \vec{F} \cdot d\vec{r} \\=& F_{\tan} \cdot d\vec{r} \\=& F_{\tan} \cdot r \cdot d\theta \\=& \tau d\theta \\ \end{aligned}\]

We've got the expression of work in rotational systems:

\[\boxed{dW = \tau d\theta \Leftrightarrow W = \int \tau d\theta \xlongequal{\text{const } \tau} \tau \Delta \theta} \]

Potential Energy

\[\begin{aligned}& \tau \\=& \frac {dW} {d\theta} \\=& \frac {dKE} {d\theta} \\=& -\frac {dU} {d\theta} \\ \end{aligned}\]

Using the above arguments, we can relate torque to potential energy (valid only if the torque is produced by conservative forces):

\[\boxed{\tau = - \frac {dU} {d\theta}} \]

Power

\[\begin{aligned}& P \\=& \frac {dW} {dt} \\=& \tau \frac {d\theta} {dt} \\=& \tau \omega \\ \end{aligned}\]

Now we can relate power in rotational systems:

\[\boxed{P = \tau \omega} \]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/877207.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

electrical, electric, electronic; comparison

electrical 3818 electric 2711 electronic 2422electrical vs electric left 4WORD 1: ELECTRICAL WORD W1 W2 PROFESSOR 118 0 , " said Charles Bouman, a Purdue professor of electrical and computer engineering.普渡大学电气和计算机工程教授查尔斯…

容斥与反演

容斥与反演 容斥 容斥原理 用于不重不漏地【表达/转化】某集合 广义容斥:合法方案数 = 总方案数 - 不合法方案数 狭义容斥: \[\left|\bigcup_{i = 1}^{n}S_i\right|=\sum_{x = 1}^{n}(-1)^{x - 1}\sum_{i_1<i_2<\cdots <i_x}\left|\bigcap_{j = 1}^{x}S_{i_j}\right…

数据库查询优化:提升性能的关键实践

title: 数据库查询优化:提升性能的关键实践 date: 2025/1/30 updated: 2025/1/30 author: cmdragon excerpt: 在当今数据驱动的商业环境中,数据库的性能直接影响着应用程序的响应速度和用户体验。查询优化是性能调优的重要组成部分,通过对 SQL 查询的分析与改进,减少查询…

记一次LLVM平行宇宙修包实战

最近加入了LLVM平行宇宙计划小组,在小组内提交了一定数量的PR。这个计划究竟是做什么的呢?LLVM平行宇宙计划是基于LLVM技术栈构建openEuler软件包,大白话讲就是原本一个软件包是用gcc/g++编译的,现在换成clang/clang++编译。虽然只是切换了编译工具,但是偶尔也有可能出现一…

spark--设置日志级别

修改前: Windows:修改后: Windows:对比: Windows:修改过程: Windows: C:\Users\Administrator\Documents\spark\spark-3.5.4-bin-hadoop3>copy conf\log4j2.properties.template conf\log4j2.properties 已复制 1 个文件。 rootLogger.level = info rootLogger.…

动手学大模型应用开发,第1天:学习大模型必知必会

一. 什么是LLM(大语言模型)? 1. 发展历程 语言建模的研究始于20世纪90年代,最初采用了统计学习方法,通过前面的词汇来预测下一个词汇。然而,这种方法在理解复杂语言规则方面存在一定局限性。 随后,研究人员不断尝试改进,其中在2003年,深度学习先驱Bengio在他的经典论文…

RevivedUnblockInstaller无法加载版本的一种解决方法

可以自己去Github仓库下一个 https://github.com/UnblockNeteaseMusic/server 打开RevivedUnblockInstaller目录,我这里是C:\betterncm\RevivedUnblockInstaller 把unblockneteasemusic-win-x64.exe改成UnblockNeteaseMusic-vx.xx.x.exe 我这里改成了UnblockNeteaseMusic-v0.2…

二分答案——时隔三个月的再次

暂且不提三个月未更新的主要原因(懒) 来自25年牛牛寒假营的一道寄巧题part1 仔细考虑,显然满足单调性:假设时间T恰好发生第k次碰撞,那么T之前都不能发生,T之后只会越来越多 据此,又回到了上一篇的二分答案模板,但这里仍需考虑几个问题,如何简化问题? 对于高中物理,无…

[SWPUCTF 2021 新生赛]easyupload1.0 Writeup

1.发现是一个文件上传的题目,先上传一个一句话木马hack.jpg(因为题目前端有格式控制只能上传jpg文件)2.用burp抓包后修改后缀名为.php绕过过滤3.发包后显示:4:再用蚁剑进行连接(注意url,文件在/upload中上传),发现连接成功后找到flag.php但是发现这是个假flag(个人认为…

DeepSeek-R1环境搭建推理测试

​ 引子 这两天国货之光DeepSeek-R1火爆出圈,凑个热闹。过来看看 aha moment(顿悟时刻)的神奇,OK,我们开始吧。 一、模型介绍 1月20日,中国AI公司深度求索(DeepSeek)发布的DeepSeek-R1模型,凭借其独特的强化学习(RL)训练方法,首次让AI展现出类人的“顿悟时刻”——…

Centos7解决 pip is configured with locations that require TLS/SSL 问题

​ 当在 CentOS 系统中遇到 pip is configured with locations that require TLS/SSL, however the ssl module in Python is not available 错误时,这通常意味着 Python 的 SSL 模块没有正确安装或配置,从而导致pip无法使用安全连接来下载包。以下是解决此问题的详细步骤: …

突破自我,研发必须掌握的软技能!

0 你的问题,我知道! 光有硬技能远不够,很多研发硬技能不错,但发展有明显天花板。 影响研发职业发展走多远的核心能力有啥?技术只是打底和起步,长期职业发展看综合能力,各种软技能组合。研发常忽视或理解片面的能力: 1 沟通表达 1.1 啥是沟通表达? 不是口头“能说”,而…