浙大陈越何钦铭数据结构07-图6 旅游规划

题目:

有了一张自驾旅游路线图,你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。

输入格式:
输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。

输出格式:
在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。

输入样例:
4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 20
输出样例:
3 40

代码及注释:

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>#define MAX_VERTEX_NUM 500
#define MAX_DIST 501
#define MAX_COST 501
#define ERROR -1typedef int Vertex;struct _Edge
{Vertex V, W;int dist, cost;
};
typedef struct _Edge *Edge;struct _MGraph
{int Nv, Ne;int dist[MAX_VERTEX_NUM][MAX_VERTEX_NUM];int cost[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
};
typedef struct _MGraph *MGraph; /* 以邻接矩阵存储的图的类型  */void InsertEdge(MGraph G, Edge E); // 插入边
MGraph CreateGraph(int vertexNum); // 初始化图
MGraph BuildGraph();Vertex FindMinDist(MGraph G, int dist[], bool collected[]);
void Dijkstra(MGraph G, int dist[], int cost[], Vertex S);Vertex src, dst;
// 对于全局的int数组自动初始化为0,bool数组初始化为false
int dist[MAX_VERTEX_NUM];
int cost[MAX_VERTEX_NUM];
bool collected[MAX_VERTEX_NUM];/*
07-图6 旅游规划
https://pintia.cn/problem-sets/1667128414987735040/exam/problems/1667128415088398337难度:2颗星4 5 0 3
0 1 1 20
1 3 2 30
0 3 4 10
0 2 2 20
2 3 1 203 40*/int main()
{MGraph G = BuildGraph();Dijkstra(G, dist, cost, src);printf("%d %d\n", dist[dst], cost[dst]);free(G);return 0;
}MGraph CreateGraph(int vertexNum)
{MGraph G = (MGraph)malloc(sizeof(struct _MGraph));G->Nv = vertexNum;G->Ne = 0;Vertex V, W;for (V = 0; V < vertexNum; V++){for (W = 0; W < vertexNum; W++){G->dist[V][W] = MAX_DIST;G->cost[V][W] = MAX_COST;}}return G;
}void InsertEdge(MGraph G, Edge E)
{/* 插入边<V,W> */G->dist[E->V][E->W] = E->dist;G->cost[E->V][E->W] = E->cost;/* 若是无向图则要反向也插入 */G->dist[E->W][E->V] = E->dist;G->cost[E->W][E->V] = E->cost;
}MGraph BuildGraph()
{MGraph G;Edge E;int Nv, Ne;scanf("%d %d %d %d", &Nv, &Ne, &src, &dst);G = CreateGraph(Nv);if (Ne){G->Ne = Ne;E = (Edge)malloc(sizeof(struct _Edge));for (int i = 0; i < G->Ne; i++){scanf("%d %d %d %d", &E->V, &E->W, &E->dist, &E->cost);InsertEdge(G, E);}free(E);}return G;
}Vertex FindMinDist(MGraph G, int dist[], bool collected[])
{ /* 返回未被收录顶点中dist最小者 */Vertex minV = ERROR;int minDist = MAX_DIST;for (Vertex V = 0; V < G->Nv; V++){if (collected[V] == false && minDist > dist[V]){/* 若V未被收录,且dist[V]更小 */minDist = dist[V]; /* 更新最小距离 */minV = V;          /* 更新对应顶点 */}}if (minDist < MAX_DIST) /* 若找到最小dist */return minV;        /* 返回对应的顶点下标 */elsereturn ERROR; /* 若这样的顶点不存在,返回错误标记 */
}void Dijkstra(MGraph G, int dist[], int cost[], Vertex S)
{Vertex V, W;/* 初始化:此处默认邻接矩阵中不存在的边用INFINITY表示 */for (V = 0; V < G->Nv; V++){dist[V] = G->dist[S][V];cost[V] = G->cost[S][V];}/* 先将起点收入集合 */dist[S] = 0;cost[S] = 0;collected[S] = true;while (1){/* V = 未被收录顶点中dist最小者 */V = FindMinDist(G, dist, collected);if (V == ERROR)      /* 若这样的V不存在 */break;           /* 算法结束 */collected[V] = true; /* 收录V */for (W = 0; W < G->Nv; W++) /* 对图中的每个顶点W *//* 若W是V的邻接点并且未被收录 */if (collected[W] == false && G->dist[V][W] < MAX_DIST){if (G->dist[V][W] < 0) /* 若有负边 */return;            /* 不能正确解决,返回错误标记 *//* 若收录V使得dist[W]变小 */if (dist[V] + G->dist[V][W] < dist[W]){dist[W] = dist[V] + G->dist[V][W]; /* 更新dist[W] */cost[W] = cost[V] + G->cost[V][W];}else if (dist[V] + G->dist[V][W] == dist[W] &&cost[V] + G->cost[V][W] < cost[W]){cost[W] = cost[V] + G->cost[V][W];}}} /* while结束*/
}

ChatGPT对代码的分析,评估:

定义了合适的常量:MAX_DIST 和 MAX_COST 的定义符合题目要求,对于表示距离和花费的最大值都设置为 501,有效地区分了有限距离和无穷远的情况。

创建图和插入边:CreateGraph 和 InsertEdge 函数用于创建图和插入边的操作,实现了初始化图的邻接矩阵并向图中添加边的功能。

构建图:BuildGraph 函数根据输入构建了图,并通过调用 CreateGraph 和 InsertEdge 来创建和填充图的邻接矩阵。

Dijkstra 算法:Dijkstra 函数使用 Dijkstra 算法,根据图的邻接矩阵计算从起点到每个顶点的最短距离和最小花费。在这个过程中,使用了辅助函数 FindMinDist 来选择未被收录顶点中距离最小的顶点。

主函数运行:主函数中先调用 BuildGraph 构建图,然后调用 Dijkstra 计算最短距离和最小花费,并输出结果。

执行结果:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/87772.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构之单链表java实现

基本概念 链表是一种物理存储结构上非连续、非顺序的存储结构&#xff0c;数据元素的逻辑顺序是通过链表中指针链接次序实现的。和数组相比较&#xff0c;链表不需要指定大小&#xff0c;也不需要连续的地址。 单链表的基本设计思维是&#xff0c;利用结构体的设置&#xff0c…

javacv基础02-调用本机摄像头并预览摄像头图像画面视频

引入架包&#xff1a; <dependency><groupId>org.openpnp</groupId><artifactId>opencv</artifactId><version>4.5.5-1</version></dependency><dependency><groupId>org.bytedeco</groupId><artifactId…

镜之Json Compare Diff

前言 “镜” 寓意是凡事都有两面性,Json 对比也不例外! 因公司业务功能当中有一个履历的功能,它有多个版本的 JSON 数据需要对比出每个版本的不同差异节点并且将差异放置在一个新的 JSON 当中原有结构不能变动,差异节点使用数组对象的形式存储,前端点击标红即可显示多个版本的节…

Python绘图系统9:新建绘图类型控件,实现混合类型图表

文章目录 绘图类型控件改造AxisList更改绘图逻辑源代码 Python绘图系统&#xff1a; &#x1f4c8;从0开始实现一个三维绘图系统自定义控件&#xff1a;坐标设置控件&#x1f4c9;坐标列表控件&#x1f4c9;支持多组数据的绘图系统图表类型和风格&#xff1a;散点图和条形图&a…

春秋云镜 :CVE-2020-21650(MyuCMS后台rce)

一、题目 靶标介绍&#xff1a; MyuCMS开源内容管理系统,采用ThinkPHP开发而成的社区商城聚合&#xff0c;插件&#xff0c;模板&#xff0c;轻便快捷容易扩展 其2.2版本中admin.php/config/add方法存在任意命令执行漏洞. 进入题目&#xff1a; exp&#xff1a; url/index.p…

OpenGL精简案例一

文章目录 案例一 绘制点线面定义Renderer顶点着色器片段着色器内置的特殊变量 应用场景工具ShaderHelper工具 TextResourceReader效果图如下 结论 案例一 绘制点线面 定义Renderer import android.content.Context; import android.opengl.GLES20; import android.opengl.GLSu…

基于空洞卷积DCNN与长短期时间记忆模型LSTM的dcnn-lstm的回归预测模型

周末的时候有时间鼓捣的一个小实践&#xff0c;主要就是做的多因子回归预测的任务&#xff0c;关于时序数据建模和回归预测建模我的专栏和系列博文里面已经有了非常详细的介绍了&#xff0c;这里就不再多加赘述了&#xff0c;这里主要是一个模型融合的实践&#xff0c;这里的数…

Hbase-技术文档-java.net.UnknownHostException: 不知道这样的主机。 (e64682f1b276)

问题描述&#xff1a; 在使用spring-boot操作habse的时候&#xff0c;在对habse进行操作的时候出现这个问题。。 报错信息如下&#xff1a; 第一段报错&#xff1a; 第二段报错&#xff1a; java.net.UnknownHostException: e64682f1b276 问题定位解读&#xff1a; 错误 ja…

Java 体系性能优化工具

Java 体系性能优化 目录概述需求&#xff1a; 设计思路实现思路分析1.oom 异常来说&#xff1a;2.visualvm3.Arthas4.JProfiler &#xff08;全面&#xff09;5.jmeter 特有 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect…

去除wps段落柄,删除空白页

如图&#xff0c;有一个段落柄在左端&#xff0c;无法删除&#xff0c;只能编辑。 导致本来是8页内容&#xff0c;现在是9页&#xff0c;多了一空白页 后面新建一个空白页&#xff0c;发现默认会自带一个段落柄&#xff0c;所以有可能这个段落柄是不能消除的&#xff0c;那么如…

【从零开始学习JAVA | 第四十六篇】处理请求参数

前言&#xff1a; 在我们之前的学习中&#xff0c;我们已经基本学习完了JAVA的基础内容&#xff0c;从今天开始我们就逐渐进入到JAVA的时间&#xff0c;在这一大篇章&#xff0c;我们将对前后端有一个基本的认识&#xff0c;并要学习如何成为一名合格的后端工程师。今天我们介绍…

记一种不错的缓存设计思路

之前与同事讨论接口性能问题时听他介绍了一种缓存设计思路&#xff0c;觉得不错&#xff0c;做个记录供以后参考。 场景 假设有个以下格式的接口&#xff1a; GET /api?keys{key1,key2,key3,...}&types{1,2,3,...} 其中 keys 是业务主键列表&#xff0c;types 是想要取到的…