指标收集是每个机器学习项目不可或缺的组成部分,它使我们能够跟踪模型性能并监控训练进度。理想情况下,我们希望在不给训练过程带来额外开销的前提下收集和计算指标。与训练循环的其他部分一样,低效的指标计算可能会引入不必要的开销,延长训练步骤的耗时,并增加训练成本。
本文是将聚焦于指标收集,演示指标收集的一种简单实现如何对运行时性能产生负面影响,并探讨用于分析和优化它的工具与技术。
为了实现指标收集,我们将使用 TorchMetrics,这是一个标准化 PyTorch 中指标计算的常用库。我们的目标是:
为了便于讨论,我们将定义一个简单的 PyTorch 模型,并评估指标收集对运行时性能的影响。我们将在 NVIDIA A40 GPU 上运行实验,使用的 PyTorch 版本为 2.5.1(通过 Docker 镜像),TorchMetrics 版本为 1.6.1。
需要注意的是:指标收集的行为可能因硬件、运行时环境和模型架构而异。本文中提供的代码片段仅用于演示目的。
https://avoid.overfit.cn/post/429185b1fd4f49eea7d4140174cce7a2