python进行数据分析:数据预处理

六大数据类型 见python基本功

import numpy as np  
import pandas as pd

数据预处理

缺失值处理

float_data = pd.Series([1.2, -3.5, np.nan, 0])  
float_data
0    1.2  
1   -3.5  
2    NaN  
3    0.0  
dtype: float64

查看缺失值

float_data.isna()
0    False  
1    False  
2     True  
3    False  
dtype: bool
string_data = pd.Series(["aardvark", np.nan, None, "avocado"])  
string_data  
string_data.isna()  
float_data = pd.Series([1, 2, None], dtype='float64')  
float_data  
float_data.isna()
0    False  
1    False  
2     True  
dtype: bool

删除缺失值

data = pd.Series([1, np.nan, 3.5, np.nan, 7])  
data.dropna()
0    1.0  
2    3.5  
4    7.0  
dtype: float64
data[data.notna()]
0    1.0  
2    3.5  
4    7.0  
dtype: float64
data = pd.DataFrame([[1., 6.5, 3.], [1., np.nan, np.nan],  [np.nan, np.nan, np.nan], [np.nan, 6.5, 3.]])  
print(data)  
data.dropna()
     0    1    2  
0  1.0  6.5  3.0  
1  1.0  NaN  NaN  
2  NaN  NaN  NaN  
3  NaN  6.5  3.0

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |

data.dropna(how="all")##删除行全部都是缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |
| 1 | 1.0 | NaN | NaN |
| 3 | NaN | 6.5 | 3.0 |

data[4] = np.nan  
data  
data.dropna(axis="columns", how="all")##删除列全部都是缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 1.0 | 6.5 | 3.0 |
| 1 | 1.0 | NaN | NaN |
| 2 | NaN | NaN | NaN |
| 3 | NaN | 6.5 | 3.0 |

df = pd.DataFrame(np.random.standard_normal((7, 3)))  
df.iloc[:4, 1] = np.nan  
df.iloc[:2, 2] = np.nan  
print(df)  
df.dropna()#删除含缺失值的行
          0         1         2  
0  0.476985       NaN       NaN  
1 -0.577087       NaN       NaN  
2  0.523772       NaN  1.343810  
3 -0.713544       NaN -2.370232  
4 -1.860761 -0.860757  0.560145  
5 -1.265934  0.119827 -1.063512  
6  0.332883 -2.359419 -0.199543

|
| 0 | 1 | 2 |
| — | — | — | — |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df.dropna(thresh=2)# 删除至少有两个缺失值的行

|
| 0 | 1 | 2 |
| — | — | — | — |
| 2 | 0.523772 | NaN | 1.343810 |
| 3 | -0.713544 | NaN | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

缺失值填充

df.fillna(0)##缺失值填充为0

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 0.476985 | 0.000000 | 0.000000 |
| 1 | -0.577087 | 0.000000 | 0.000000 |
| 2 | 0.523772 | 0.000000 | 1.343810 |
| 3 | -0.713544 | 0.000000 | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df.fillna({1: 0.5, 2: 0})#不同列填充不同缺失值

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | 0.476985 | 0.500000 | 0.000000 |
| 1 | -0.577087 | 0.500000 | 0.000000 |
| 2 | 0.523772 | 0.500000 | 1.343810 |
| 3 | -0.713544 | 0.500000 | -2.370232 |
| 4 | -1.860761 | -0.860757 | 0.560145 |
| 5 | -1.265934 | 0.119827 | -1.063512 |
| 6 | 0.332883 | -2.359419 | -0.199543 |

df = pd.DataFrame(np.random.standard_normal((6, 3)))  
df.iloc[2:, 1] = np.nan  
df.iloc[4:, 2] = np.nan  
df

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | NaN | 0.069877 |
| 3 | 0.246674 | NaN | 1.004812 |
| 4 | 1.327195 | NaN | NaN |
| 5 | 0.022185 | NaN | NaN |

df.fillna(method="ffill")#向下填充

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | 0.377984 | 0.069877 |
| 3 | 0.246674 | 0.377984 | 1.004812 |
| 4 | 1.327195 | 0.377984 | 1.004812 |
| 5 | 0.022185 | 0.377984 | 1.004812 |

df.fillna(method="ffill", limit=2)#向下填充,限制填充数量=2

|
| 0 | 1 | 2 |
| — | — | — | — |
| 0 | -1.541996 | -0.970736 | -1.307030 |
| 1 | 0.286350 | 0.377984 | -0.753887 |
| 2 | 0.331286 | 0.377984 | 0.069877 |
| 3 | 0.246674 | 0.377984 | 1.004812 |
| 4 | 1.327195 | NaN | 1.004812 |
| 5 | 0.022185 | NaN | 1.004812 |

data = pd.Series([1., np.nan, 3.5, np.nan, 7])  
data.fillna(data.mean())#以平均值填充
0    1.000000  
1    3.833333  
2    3.500000  
3    3.833333  
4    7.000000  
dtype: float64

重复值处理

data = pd.DataFrame({"k1": ["one", "two"] * 3 + ["two"],  "k2": [1, 1, 2, 3, 3, 4, 4]})  
data

|
| k1 | k2 |
| — | — | — |
| 0 | one | 1 |
| 1 | two | 1 |
| 2 | one | 2 |
| 3 | two | 3 |
| 4 | one | 3 |
| 5 | two | 4 |
| 6 | two | 4 |

查看是否存在重复值

data.duplicated()
0    False  
1    False  
2    False  
3    False  
4    False  
5    False  
6     True  
dtype: bool

删除重复值

data.drop_duplicates()

|
| k1 | k2 |
| — | — | — |
| 0 | one | 1 |
| 1 | two | 1 |
| 2 | one | 2 |
| 3 | two | 3 |
| 4 | one | 3 |
| 5 | two | 4 |

data["v1"] = range(7)  
data

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |
| 2 | one | 2 | 2 |
| 3 | two | 3 | 3 |
| 4 | one | 3 | 4 |
| 5 | two | 4 | 5 |
| 6 | two | 4 | 6 |

data.drop_duplicates(subset=["k1"])#只要k1列有重复值就去重,保留第一行

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |

data.drop_duplicates(["k1", "k2"], keep="last")#只要k1&k2有重复值就去重,保留最后一行

|
| k1 | k2 | v1 |
| — | — | — | — |
| 0 | one | 1 | 0 |
| 1 | two | 1 | 1 |
| 2 | one | 2 | 2 |
| 3 | two | 3 | 3 |
| 4 | one | 3 | 4 |
| 6 | two | 4 | 6 |

函数映射

data = pd.DataFrame({"food": ["bacon", "pulled pork", "bacon",  "pastrami", "corned beef", "bacon",  "pastrami", "honey ham", "nova lox"],  "ounces": [4, 3, 12, 6, 7.5, 8, 3, 5, 6]})  
data

|
| food | ounces |
| — | — | — |
| 0 | bacon | 4.0 |
| 1 | pulled pork | 3.0 |
| 2 | bacon | 12.0 |
| 3 | pastrami | 6.0 |
| 4 | corned beef | 7.5 |
| 5 | bacon | 8.0 |
| 6 | pastrami | 3.0 |
| 7 | honey ham | 5.0 |
| 8 | nova lox | 6.0 |

map()将字典中的key映射为value

meat_to_animal = {  "bacon": "pig",  "pulled pork": "pig",  "pastrami": "cow",  "corned beef": "cow",  "honey ham": "pig",  "nova lox": "salmon"  
}
data["animal"] = data["food"].map(meat_to_animal)  
data

|
| food | ounces | animal |
| — | — | — | — |
| 0 | bacon | 4.0 | pig |
| 1 | pulled pork | 3.0 | pig |
| 2 | bacon | 12.0 | pig |
| 3 | pastrami | 6.0 | cow |
| 4 | corned beef | 7.5 | cow |
| 5 | bacon | 8.0 | pig |
| 6 | pastrami | 3.0 | cow |
| 7 | honey ham | 5.0 | pig |
| 8 | nova lox | 6.0 | salmon |

def get_animal(x):  return meat_to_animal[x]  
data["food"].map(get_animal)
0       pig  
1       pig  
2       pig  
3       cow  
4       cow  
5       pig  
6       cow  
7       pig  
8    salmon  
Name: food, dtype: object

替换

data = pd.Series([1., -999., 2., -999., -1000., 3.])  
data
0       1.0  
1    -999.0  
2       2.0  
3    -999.0  
4   -1000.0  
5       3.0  
dtype: float64

单值替换

data.replace(-999, np.nan)#将-999替换为缺失值
0       1.0  
1       NaN  
2       2.0  
3       NaN  
4   -1000.0  
5       3.0  
dtype: float64

多值替换

data.replace([-999, -1000], np.nan)#将-999&-1000替换为缺失值
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    NaN  
5    3.0  
dtype: float64
data.replace([-999, -1000], [np.nan, 0])#将-999替换为缺失值,-1000替换为0
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    0.0  
5    3.0  
dtype: float64
data.replace({-999: np.nan, -1000: 0})#将-999替换为缺失值,-1000替换为0
0    1.0  
1    NaN  
2    2.0  
3    NaN  
4    0.0  
5    3.0  
dtype: float64
data = pd.DataFrame(np.arange(12).reshape((3, 4)),  index=["Ohio", "Colorado", "New York"],  columns=["one", "two", "three", "four"])
def transform(x):  return x[:4].upper()  data.index.map(transform)
Index(['OHIO', 'COLO', 'NEW '], dtype='object')
data.index = data.index.map(transform)  
data

|
| one | two | three | four |
| — | — | — | — | — |
| OHIO | 0 | 1 | 2 | 3 |
| COLO | 4 | 5 | 6 | 7 |
| NEW | 8 | 9 | 10 | 11 |

重命名rename

data.rename(index=str.title, columns=str.upper)

|
| ONE | TWO | THREE | FOUR |
| — | — | — | — | — |
| Ohio | 0 | 1 | 2 | 3 |
| Colo | 4 | 5 | 6 | 7 |
| New | 8 | 9 | 10 | 11 |

data.rename(index={"OHIO": "INDIANA"},  columns={"three": "peekaboo"})

|
| one | two | peekaboo | four |
| — | — | — | — | — |
| INDIANA | 0 | 1 | 2 | 3 |
| COLO | 4 | 5 | 6 | 7 |
| NEW | 8 | 9 | 10 | 11 |

数据分箱pd.cut&pd.qcut

  • • pd.cut() 将指定序列 x,按指定数量等间距的划分(根据值本身而不是这些值的频率选择均匀分布的bins),或按照指定间距划分

  • • pd.qcut() 将指定序列 x,划分为 q 个区间,使落在每个区间的记录数一致

ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]
bins = [18, 25, 35, 60, 100]  
age_categories = pd.cut(ages, bins)  
age_categories
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]]  
Length: 12  
Categories (4, interval[int64, right]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]
age_categories.codes  
age_categories.categories  
age_categories.categories[0]  
pd.value_counts(age_categories)
(18, 25]     5  
(25, 35]     3  
(35, 60]     3  
(60, 100]    1  
dtype: int64
pd.cut(ages, bins, right=False)
[[18, 25), [18, 25), [25, 35), [25, 35), [18, 25), ..., [25, 35), [60, 100), [35, 60), [35, 60), [25, 35)]  
Length: 12  
Categories (4, interval[int64, left]): [[18, 25) < [25, 35) < [35, 60) < [60, 100)]
group_names = ["Youth", "YoungAdult", "MiddleAged", "Senior"]  
pd.cut(ages, bins, labels=group_names)
['Youth', 'Youth', 'Youth', 'YoungAdult', 'Youth', ..., 'YoungAdult', 'Senior', 'MiddleAged', 'MiddleAged', 'YoungAdult']  
Length: 12  
Categories (4, object): ['Youth' < 'YoungAdult' < 'MiddleAged' < 'Senior']
data = np.random.uniform(size=20)  
pd.cut(data, 4, precision=2)
[(0.32, 0.53], (0.74, 0.95], (0.74, 0.95], (0.53, 0.74], (0.11, 0.32], ..., (0.74, 0.95], (0.11, 0.32], (0.74, 0.95], (0.32, 0.53], (0.74, 0.95]]  
Length: 20  
Categories (4, interval[float64, right]): [(0.11, 0.32] < (0.32, 0.53] < (0.53, 0.74] < (0.74, 0.95]]
data = np.random.standard_normal(1000)  
quartiles = pd.qcut(data, 4, precision=2)  
quartiles  
pd.value_counts(quartiles)
(-2.96, -0.69]     250  
(-0.69, -0.032]    250  
(-0.032, 0.61]     250  
(0.61, 3.93]       250  
dtype: int64
pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.]).value_counts()
(-2.9499999999999997, -1.187]    100  
(-1.187, -0.0321]                400  
(-0.0321, 1.287]                 400  
(1.287, 3.928]                   100  
dtype: int64
data = pd.DataFrame(np.random.standard_normal((1000, 4)))  
data.describe()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| count | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 |
| mean | -0.047439 | 0.046069 | 0.024366 | -0.006350 |
| std | 0.997187 | 0.998359 | 1.008925 | 0.993665 |
| min | -3.428254 | -3.645860 | -3.184377 | -3.745356 |
| 25% | -0.743886 | -0.599807 | -0.612162 | -0.697084 |
| 50% | -0.086309 | 0.043663 | -0.013609 | -0.026381 |
| 75% | 0.624413 | 0.746527 | 0.690847 | 0.694459 |
| max | 3.366626 | 2.653656 | 3.525865 | 2.735527 |

col = data[2]  
col[col.abs() > 3]
55     3.260383  
230   -3.056990  
317   -3.184377  
777    3.525865  
Name: 2, dtype: float64
data[(data.abs() > 3).any(axis="columns")]

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| 36 | -2.315555 | 0.457246 | -0.025907 | -3.399312 |
| 55 | 0.050188 | 1.951312 | 3.260383 | 0.963301 |
| 131 | 0.146326 | 0.508391 | -0.196713 | -3.745356 |
| 230 | -0.293333 | -0.242459 | -3.056990 | 1.918403 |
| 254 | -3.428254 | -0.296336 | -0.439938 | -0.867165 |
| 317 | 0.275144 | 1.179227 | -3.184377 | 1.369891 |
| 539 | -0.362528 | -3.548824 | 1.553205 | -2.186301 |
| 631 | 3.366626 | -2.372214 | 0.851010 | 1.332846 |
| 777 | -0.658090 | -0.207434 | 3.525865 | 0.283070 |
| 798 | 0.599947 | -3.645860 | 0.255475 | -0.549574 |

data[data.abs() > 3] = np.sign(data) * 3  
data.describe()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| count | 1000.000000 | 1000.000000 | 1000.000000 | 1000.000000 |
| mean | -0.047378 | 0.047263 | 0.023821 | -0.005206 |
| std | 0.994634 | 0.994342 | 1.005685 | 0.989845 |
| min | -3.000000 | -3.000000 | -3.000000 | -3.000000 |
| 25% | -0.743886 | -0.599807 | -0.612162 | -0.697084 |
| 50% | -0.086309 | 0.043663 | -0.013609 | -0.026381 |
| 75% | 0.624413 | 0.746527 | 0.690847 | 0.694459 |
| max | 3.000000 | 2.653656 | 3.000000 | 2.735527 |

np.sign(data).head()

|
| 0 | 1 | 2 | 3 |
| — | — | — | — | — |
| 0 | -1.0 | 1.0 | -1.0 | 1.0 |
| 1 | -1.0 | 1.0 | -1.0 | 1.0 |
| 2 | -1.0 | -1.0 | -1.0 | -1.0 |
| 3 | -1.0 | 1.0 | 1.0 | -1.0 |
| 4 | 1.0 | 1.0 | 1.0 | -1.0 |

随机重排列

df = pd.DataFrame(np.arange(5 * 7).reshape((5, 7)))  
df  
sampler = np.random.permutation(5)#permutation:产生0到n-1的所有整数的随机排列  
sampler
array([2, 4, 3, 0, 1])
df.take(sampler)#行随机排列

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 3 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

df.iloc[sampler]

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 3 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

column_sampler = np.random.permutation(7)  
column_sampler  
df.take(column_sampler, axis="columns")#列随机排列

|
| 6 | 2 | 1 | 3 | 4 | 0 | 5 |
| — | — | — | — | — | — | — | — |
| 0 | 6 | 2 | 1 | 3 | 4 | 0 | 5 |
| 1 | 13 | 9 | 8 | 10 | 11 | 7 | 12 |
| 2 | 20 | 16 | 15 | 17 | 18 | 14 | 19 |
| 3 | 27 | 23 | 22 | 24 | 25 | 21 | 26 |
| 4 | 34 | 30 | 29 | 31 | 32 | 28 | 33 |

随机采样

df.sample(n=3)# n指定采样的个数

|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| — | — | — | — | — | — | — | — |
| 2 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 4 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |
| 1 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

choices = pd.Series([5, 7, -1, 6, 4])  
choices.sample(n=10, replace=True)
0    5  
1    7  
0    5  
0    5  
2   -1  
4    4  
2   -1  
2   -1  
0    5  
4    4  
dtype: int64

哑变量编码

df = pd.DataFrame({"key": ["b", "b", "a", "c", "a", "b"],  "data1": range(6)})  
df

|
| key | data1 |
| — | — | — |
| 0 | b | 0 |
| 1 | b | 1 |
| 2 | a | 2 |
| 3 | c | 3 |
| 4 | a | 4 |
| 5 | b | 5 |

pd.get_dummies(df["key"])

|
| a | b | c |
| — | — | — | — |
| 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 |
| 2 | 1 | 0 | 0 |
| 3 | 0 | 0 | 1 |
| 4 | 1 | 0 | 0 |
| 5 | 0 | 1 | 0 |

dummies = pd.get_dummies(df["key"], prefix="key")##前缀为key  
df_with_dummy = df[["data1"]].join(dummies)#合并数据集  
df_with_dummy

|
| data1 | key_a | key_b | key_c |
| — | — | — | — | — |
| 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 2 | 2 | 1 | 0 | 0 |
| 3 | 3 | 0 | 0 | 1 |
| 4 | 4 | 1 | 0 | 0 |
| 5 | 5 | 0 | 1 | 0 |

mnames = ["movie_id", "title", "genres"]  
movies = pd.read_table("datasets/movielens/movies.dat", sep="::",  header=None, names=mnames, engine="python")  
movies[:10]

|
| movie_id | title | genres |
| — | — | — | — |
| 0 | 1 | Toy Story (1995) | Animation|Children’s|Comedy |
| 1 | 2 | Jumanji (1995) | Adventure|Children’s|Fantasy |
| 2 | 3 | Grumpier Old Men (1995) | Comedy|Romance |
| 3 | 4 | Waiting to Exhale (1995) | Comedy|Drama |
| 4 | 5 | Father of the Bride Part II (1995) | Comedy |
| 5 | 6 | Heat (1995) | Action|Crime|Thriller |
| 6 | 7 | Sabrina (1995) | Comedy|Romance |
| 7 | 8 | Tom and Huck (1995) | Adventure|Children’s |
| 8 | 9 | Sudden Death (1995) | Action |
| 9 | 10 | GoldenEye (1995) | Action|Adventure|Thriller |

dummies = movies["genres"].str.get_dummies("|")##将一列中以|分割的字段变成哑变量  
dummies.iloc[:10, :6]

|
| Action | Adventure | Animation | Children’s | Comedy | Crime |
| — | — | — | — | — | — | — |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 0 |
| 4 | 0 | 0 | 0 | 0 | 1 | 0 |
| 5 | 1 | 0 | 0 | 0 | 0 | 1 |
| 6 | 0 | 0 | 0 | 0 | 1 | 0 |
| 7 | 0 | 1 | 0 | 1 | 0 | 0 |
| 8 | 1 | 0 | 0 | 0 | 0 | 0 |
| 9 | 1 | 1 | 0 | 0 | 0 | 0 |

movies_windic = movies.join(dummies.add_prefix("Genre_"))  
movies_windic.iloc[0]
movie_id                                       1  
title                           Toy Story (1995)  
genres               Animation|Children's|Comedy  
Genre_Action                                   0  
Genre_Adventure                                0  
Genre_Animation                                1  
Genre_Children's                               1  
Genre_Comedy                                   1  
Genre_Crime                                    0  
Genre_Documentary                              0  
Genre_Drama                                    0  
Genre_Fantasy                                  0  
Genre_Film-Noir                                0  
Genre_Horror                                   0  
Genre_Musical                                  0  
Genre_Mystery                                  0  
Genre_Romance                                  0  
Genre_Sci-Fi                                   0  
Genre_Thriller                                 0  
Genre_War                                      0  
Genre_Western                                  0  
Name: 0, dtype: object
np.random.seed(12345) # to make the example repeatable  
values = np.random.uniform(size=10)  
values  
bins = [0, 0.2, 0.4, 0.6, 0.8, 1]  
pd.get_dummies(pd.cut(values, bins))

|
| (0.0, 0.2] | (0.2, 0.4] | (0.4, 0.6] | (0.6, 0.8] | (0.8, 1.0] |
| — | — | — | — | — | — |
| 0 | 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 0 | 0 |
| 3 | 0 | 1 | 0 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 | 0 |
| 5 | 0 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 0 | 0 | 1 |
| 7 | 0 | 0 | 0 | 1 | 0 |
| 8 | 0 | 0 | 0 | 1 | 0 |
| 9 | 0 | 0 | 0 | 1 | 0 |

正则表达式

s = pd.Series([1, 2, 3, None])  
s  
s.dtype
dtype('float64')
s = pd.Series([1, 2, 3, None], dtype=pd.Int64Dtype())  
s  
s.isna()  
s.dtype
Int64Dtype()
s[3]  
s[3] is pd.NA
True
s = pd.Series([1, 2, 3, None], dtype="Int64")
s = pd.Series(['one', 'two', None, 'three'], dtype=pd.StringDtype())  
s
0      one  
1      two  
2     <NA>  
3    three  
dtype: string
df = pd.DataFrame({"A": [1, 2, None, 4],  "B": ["one", "two", "three", None],  "C": [False, None, False, True]})  
df  
df["A"] = df["A"].astype("Int64")  
df["B"] = df["B"].astype("string")  
df["C"] = df["C"].astype("boolean")  
df

|
| A | B | C |
| — | — | — | — |
| 0 | 1 | one | False |
| 1 | 2 | two | |
| 2 | | three | False |
| 3 | 4 | | True |

val = "a,b,  guido"  
val.split(",")
['a', 'b', '  guido']
pieces = [x.strip() for x in val.split(",")]  
pieces
['a', 'b', 'guido']
first, second, third = pieces  
first + "::" + second + "::" + third
'a::b::guido'
"::".join(pieces)
'a::b::guido'
"guido" in val  
val.index(",")  
val.find(":")
-1
val.index(":")
---------------------------------------------------------------------------  ValueError                                Traceback (most recent call last)  ~\AppData\Local\Temp\ipykernel_20552\2601145560.py in <module>  
----> 1 val.index(":")  ValueError: substring not found
val.count(",")
2
val.replace(",", "::")  
val.replace(",", "")
'ab  guido'
import re  
text = "foo    bar\t baz  \tqux"  
re.split(r"\s+", text)
['foo', 'bar', 'baz', 'qux']
regex = re.compile(r"\s+")  
regex.split(text)
['foo', 'bar', 'baz', 'qux']
regex.findall(text)
['    ', '\t ', '  \t']
text = """Dave dave@google.com  
Steve steve@gmail.com  
Rob rob@gmail.com  
Ryan ryan@yahoo.com"""  
pattern = r"[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}"  regex = re.compile(pattern, flags=re.IGNORECASE)
regex.findall(text)
['dave@google.com', 'steve@gmail.com', 'rob@gmail.com', 'ryan@yahoo.com']
m = regex.search(text)  
m  
text[m.start():m.end()]
'dave@google.com'
print(regex.match(text))
None
print(regex.sub("REDACTED", text))
Dave REDACTED  
Steve REDACTED  
Rob REDACTED  
Ryan REDACTED
pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"  
regex = re.compile(pattern, flags=re.IGNORECASE)
m = regex.match("wesm@bright.net")  
m.groups()
('wesm', 'bright', 'net')
regex.findall(text)
[('dave', 'google', 'com'),  ('steve', 'gmail', 'com'),  ('rob', 'gmail', 'com'),  ('ryan', 'yahoo', 'com')]
print(regex.sub(r"Username: \1, Domain: \2, Suffix: \3", text))
Dave Username: dave, Domain: google, Suffix: com  
Steve Username: steve, Domain: gmail, Suffix: com  
Rob Username: rob, Domain: gmail, Suffix: com  
Ryan Username: ryan, Domain: yahoo, Suffix: com
data = {"Dave": "dave@google.com", "Steve": "steve@gmail.com",  "Rob": "rob@gmail.com", "Wes": np.nan}  
data = pd.Series(data)  
data  
data.isna()
Dave     False  
Steve    False  
Rob      False  
Wes       True  
dtype: bool
data.str.contains("gmail")
Dave     False  
Steve     True  
Rob       True  
Wes        NaN  
dtype: object
data_as_string_ext = data.astype('string')  
data_as_string_ext  
data_as_string_ext.str.contains("gmail")
Dave     False  
Steve     True  
Rob       True  
Wes       <NA>  
dtype: boolean
pattern = r"([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})"  
data.str.findall(pattern, flags=re.IGNORECASE)
Dave     [(dave, google, com)]  
Steve    [(steve, gmail, com)]  
Rob        [(rob, gmail, com)]  
Wes                        NaN  
dtype: object
matches = data.str.findall(pattern, flags=re.IGNORECASE).str[0]  
matches  
matches.str.get(1)
Dave     google  
Steve     gmail  
Rob       gmail  
Wes         NaN  
dtype: object
data.str[:5]
Dave     dave@  
Steve    steve  
Rob      rob@g  
Wes        NaN  
dtype: object
data.str.extract(pattern, flags=re.IGNORECASE)

|
| 0 | 1 | 2 |
| — | — | — | — |
| Dave | dave | google | com |
| Steve | steve | gmail | com |
| Rob | rob | gmail | com |
| Wes | NaN | NaN | NaN |

values = pd.Series(['apple', 'orange', 'apple',  'apple'] * 2)  
values  
pd.unique(values)  
pd.value_counts(values)
apple     6  
orange    2  
dtype: int64
values = pd.Series([0, 1, 0, 0] * 2)  
dim = pd.Series(['apple', 'orange'])  
values  
dim
0     apple  
1    orange  
dtype: object
dim.take(values)
0     apple  
1    orange  
0     apple  
0     apple  
0     apple  
1    orange  
0     apple  
0     apple  
dtype: object
fruits = ['apple', 'orange', 'apple', 'apple'] * 2  
N = len(fruits)  
rng = np.random.default_rng(seed=12345)  
df = pd.DataFrame({'fruit': fruits,  'basket_id': np.arange(N),  'count': rng.integers(3, 15, size=N),  'weight': rng.uniform(0, 4, size=N)},  columns=['basket_id', 'fruit', 'count', 'weight'])  
df

|
| basket_id | fruit | count | weight |
| — | — | — | — | — |
| 0 | 0 | apple | 11 | 1.564438 |
| 1 | 1 | orange | 5 | 1.331256 |
| 2 | 2 | apple | 12 | 2.393235 |
| 3 | 3 | apple | 6 | 0.746937 |
| 4 | 4 | apple | 5 | 2.691024 |
| 5 | 5 | orange | 12 | 3.767211 |
| 6 | 6 | apple | 10 | 0.992983 |
| 7 | 7 | apple | 11 | 3.795525 |

fruit_cat = df['fruit'].astype('category')  
fruit_cat
0     apple  
1    orange  
2     apple  
3     apple  
4     apple  
5    orange  
6     apple  
7     apple  
Name: fruit, dtype: category  
Categories (2, object): ['apple', 'orange']
c = fruit_cat.array  
type(c)
pandas.core.arrays.categorical.Categorical
c.categories  
c.codes
array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int8)
dict(enumerate(c.categories))
{0: 'apple', 1: 'orange'}
df['fruit'] = df['fruit'].astype('category')  
df["fruit"]
0     apple  
1    orange  
2     apple  
3     apple  
4     apple  
5    orange  
6     apple  
7     apple  
Name: fruit, dtype: category  
Categories (2, object): ['apple', 'orange']
my_categories = pd.Categorical(['foo', 'bar', 'baz', 'foo', 'bar'])  
my_categories
['foo', 'bar', 'baz', 'foo', 'bar']  
Categories (3, object): ['bar', 'baz', 'foo']
categories = ['foo', 'bar', 'baz']  
codes = [0, 1, 2, 0, 0, 1]  
my_cats_2 = pd.Categorical.from_codes(codes, categories)  
my_cats_2
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo', 'bar', 'baz']
ordered_cat = pd.Categorical.from_codes(codes, categories,  ordered=True)  
ordered_cat
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo' < 'bar' < 'baz']
my_cats_2.as_ordered()
['foo', 'bar', 'baz', 'foo', 'foo', 'bar']  
Categories (3, object): ['foo' < 'bar' < 'baz']
rng = np.random.default_rng(seed=12345)  
draws = rng.standard_normal(1000)  
draws[:5]
array([-1.4238,  1.2637, -0.8707, -0.2592, -0.0753])
bins = pd.qcut(draws, 4)  
bins
[(-3.121, -0.675], (0.687, 3.211], (-3.121, -0.675], (-0.675, 0.0134], (-0.675, 0.0134], ..., (0.0134, 0.687], (0.0134, 0.687], (-0.675, 0.0134], (0.0134, 0.687], (-0.675, 0.0134]]  
Length: 1000  
Categories (4, interval[float64, right]): [(-3.121, -0.675] < (-0.675, 0.0134] < (0.0134, 0.687] < (0.687, 3.211]]
bins = pd.qcut(draws, 4, labels=['Q1', 'Q2', 'Q3', 'Q4'])  
bins  
bins.codes[:10]
array([0, 3, 0, 1, 1, 0, 0, 2, 2, 0], dtype=int8)
bins = pd.Series(bins, name='quartile')  
results = (pd.Series(draws)  .groupby(bins)  .agg(['count', 'min', 'max'])  .reset_index())  
results

|
| quartile | count | min | max |
| — | — | — | — | — |
| 0 | Q1 | 250 | -3.119609 | -0.678494 |
| 1 | Q2 | 250 | -0.673305 | 0.008009 |
| 2 | Q3 | 250 | 0.018753 | 0.686183 |
| 3 | Q4 | 250 | 0.688282 | 3.211418 |

results['quartile']
0    Q1  
1    Q2  
2    Q3  
3    Q4  
Name: quartile, dtype: category  
Categories (4, object): ['Q1' < 'Q2' < 'Q3' < 'Q4']
N = 10_000_000  
labels = pd.Series(['foo', 'bar', 'baz', 'qux'] * (N // 4))
categories = labels.astype('category')
labels.memory_usage(deep=True)  
categories.memory_usage(deep=True)
10000540
%time _ = labels.astype('category')
Wall time: 560 ms
%timeit labels.value_counts()  
%timeit categories.value_counts()
366 ms ± 9.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)  
67.6 ms ± 2.89 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
s = pd.Series(['a', 'b', 'c', 'd'] * 2)  
cat_s = s.astype('category')  
cat_s
0    a  
1    b  
2    c  
3    d  
4    a  
5    b  
6    c  
7    d  
dtype: category  
Categories (4, object): ['a', 'b', 'c', 'd']
cat_s.cat.codes  
cat_s.cat.categories
Index(['a', 'b', 'c', 'd'], dtype='object')
actual_categories = ['a', 'b', 'c', 'd', 'e']  
cat_s2 = cat_s.cat.set_categories(actual_categories)  
cat_s2
0    a  
1    b  
2    c  
3    d  
4    a  
5    b  
6    c  
7    d  
dtype: category  
Categories (5, object): ['a', 'b', 'c', 'd', 'e']
cat_s.value_counts()  
cat_s2.value_counts()
a    2  
b    2  
c    2  
d    2  
e    0  
dtype: int64
cat_s3 = cat_s[cat_s.isin(['a', 'b'])]  
cat_s3  
cat_s3.cat.remove_unused_categories()
0    a  
1    b  
4    a  
5    b  
dtype: category  
Categories (2, object): ['a', 'b']
cat_s = pd.Series(['a', 'b', 'c', 'd'] * 2, dtype='category')
pd.get_dummies(cat_s)

|
| a | b | c | d |
| — | — | — | — | — |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 |
| 3 | 0 | 0 | 0 | 1 |
| 4 | 1 | 0 | 0 | 0 |
| 5 | 0 | 1 | 0 | 0 |
| 6 | 0 | 0 | 1 | 0 |
| 7 | 0 | 0 | 0 | 1

|

---------------------------END---------------------------

题外话

在这里插入图片描述

感兴趣的小伙伴,赠送全套Python学习资料,包含面试题、简历资料等具体看下方。

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

img
img

二、Python必备开发工具

工具都帮大家整理好了,安装就可直接上手!img

三、最新Python学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。

img

四、Python视频合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

img

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。img

六、面试宝典

在这里插入图片描述

在这里插入图片描述

简历模板在这里插入图片描述

👉CSDN大礼包🎁:全网最全《Python学习资料》免费赠送🆓!(安全链接,放心点击)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/88313.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 发行版 Debian 宣布支持龙芯 LoongArch 架构

近期&#xff0c;龙芯发布了 3A6000 桌面处理器&#xff0c;芯片的性能又一次大幅度提升&#xff0c;成为国产芯片的又一里程碑。 同期&#xff0c;LoongArch 架构的生态建设也迅速提升&#xff0c;开源网络引导固件 iPXE、QQ Linux 版、摩尔线程等软硬件都官宣支持龙芯 Loong…

linux 设置与命令基础(二)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 目录 前言 一、系统基本操作 二、命令类型 三、命令语法 四、命令补齐 五、命令帮助 六、系统基本操作命令 总结 前言 这是本人学习Linux的第二天&#xff0c;今天主…

leetcode刷题(字符串相加、包含每个查询的最小区间、模拟行走机器人、环形子数组的最大和、满足不等式的最大值、四数之和、树中距离之和)

目录 1、字符串相加 2、包含每个查询的最小区间 3、模拟行走机器人 4、环形子数组的最大和 5、满足不等式的最大值 6、四数之和 7、 树中距离之和 1、字符串相加 class Solution:def addStrings(self, num1: str, num2: str) -> str:i len(num1) - 1 # num1的末…

软考A计划-网络工程师-必考知识点-下

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列 &#x1f449;关于作者 专注于Android/Unity和各种游…

听力总结易错点+口语准则

目录 听力总结易错点 where are you come from&#xff1f;其实是错的 杯子的大小表达 口语准则 一些常见蔬菜的英文名称&#xff1a; To get a lot out of 英语复述句子题 听力总结易错点 1,在section 1 &#xff0c;很容易把a读成n 2. silver colored cloth 这个clo…

2023高教社杯数学建模思路 - 复盘:校园消费行为分析

文章目录 0 赛题思路1 赛题背景2 分析目标3 数据说明4 数据预处理5 数据分析5.1 食堂就餐行为分析5.2 学生消费行为分析 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 赛题背景 校园一卡通是集…

Java学数据结构(2)——树Tree 二叉树binary tree 二叉查找树 AVL树 树的遍历

目录 引出什么是树Tree&#xff1f;树的实现二叉树binary tree查找树ADT——二叉查找树Binary Search Tree1.contains方法2.findMax和findMin方法3.insert方法4.remove方法&#xff08;复杂&#xff09;二叉查找树的深度 AVL(Adelson-Velskii和Landis)树——平衡条件(balance c…

运算符(个人学习笔记黑马学习)

算数运算符 加减乘除 #include <iostream> using namespace std;int main() {int a1 10;int a2 20;cout << a1 a2 << endl;cout << a1 - a2 << endl;cout << a1 * a2 << endl;cout << a1 / a2 << endl;/*double a3 …

时空数据挖掘精选23篇论文解析【AAAI 2023】

今天和大家分享时空数据挖掘方向的资料。 时空数据挖掘是人工智能技术的重要分支&#xff0c;是一种采用人工智能和大数据技术对城市时空数据进行分析与挖掘的方法&#xff0c;旨在挖掘时空数据&#xff0c;理解城市本质&#xff0c;解决城市问题。 目前&#xff0c;时空数据…

相机SD卡数据丢失如何恢复?

出门在外&#xff0c;相机是人们记录生活点滴的重要工具&#xff0c;是旅游的最佳玩伴。人们每到一个地方&#xff0c;都喜欢用相机来见证自己来过的痕迹&#xff0c;拍好的照片都会被放到相机卡里&#xff0c;但在使用相机时&#xff0c;有时我们会意外删除了重要的照片或视频…

​LeetCode解法汇总57. 插入区间

目录链接&#xff1a; 力扣编程题-解法汇总_分享记录-CSDN博客 GitHub同步刷题项目&#xff1a; https://github.com/September26/java-algorithms 原题链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 描述&#xff1a; 给你一个 …

vsftpd使用遇到的问题

1.正常创建 安装到配置 yum install -y vsftpd systemctl start vsftpd useradd -d /home/ftpuser ftpuer passwd ftpuser vim /etc/vsftpd/vsftpd.conf i chroot_local_userYES allow_writeable_chrootYES chroot_list_enableYES chroot_list_file/etc/vsftpd/chroot_list2.连…