Fibonacci-ish II の 传送门
多个区间和去重交给莫队。
用线段树维护 \(\begin{bmatrix}fib_{i-1} \times val, fib_i \times val \end{bmatrix}\)。
具体和线段树的区间和差不多,上传时左右儿子矩阵相加,下传时左右儿子矩阵都乘上懒标记。
斐波那契数列下一项的矩阵是 \(\begin{bmatrix}0 & 1 \\1 & 1 \end{bmatrix}\),插入新数时区间乘这个矩阵就行。
区间除要用刚才矩阵的逆矩阵 \(\begin{bmatrix}-1 & 1 \\1 & 0 \end{bmatrix}\),现在就变成乘法了。
卡常小技巧:
用 unsigned short
,矩阵乘法展开,离散化。
#include <bits/stdc++.h>
#define int unsigned short
#define ls p << 1
#define rs p << 1 | 1
#define Ad tr[p].ad
#define mid (l + r >> 1)
using namespace std;
inline signed read()
{signed f = 0, ans = 0;char c = getchar();while (!isdigit(c))f |= c == '-', c = getchar();while (isdigit(c))ans = (ans << 3) + (ans << 1) + c - 48, c = getchar();return f ? -ans : ans;
}
void write(int x)
{if (x < 0)putchar('-'), x = -x;if (x > 9)write(x / 10);putchar(x % 10 + '0');
}
const signed N = 3e4 + 5, M = N << 2;
signed a[N], b[N];
int n, m, sq, si, mod;
int fib[N], res[N], mp[N], id[N];
struct que
{int l, r, id;bool operator<(const que &x) const{if (l / sq != x.l / sq)return l < x.l;return l / sq & 1 ? r < x.r : r > x.r;}
} q[N];
template <typename T>
inline T Mod(T &&x) { return x >= mod ? x -= mod : x; }
struct Matrix
{int h, w, a[2][2];Matrix() : Matrix(1, 2) {}Matrix(int H, int W) : h(H), w(W){for (int i = 0; i < h; ++i)for (int j = 0; j < w; ++j)a[i][j] = 0;}Matrix(short id){if (id == 0)assert(0);else{h = w = 2;if (id > 0)a[0][1] = a[1][0] = a[1][1] = 1, a[0][0] = 0;elsea[1][0] = a[0][1] = 1, a[0][0] = mod - 1, a[1][1] = 0;}}Matrix operator+(const Matrix &rhs) const{Matrix ans(*this);Mod(ans.a[0][0] += rhs.a[0][0]);Mod(ans.a[0][1] += rhs.a[0][1]);return ans;}Matrix operator*(const Matrix &rhs) const{Matrix ans(h, rhs.w);if (h == 1 && w == 2){ans.a[0][0] = Mod(1 * a[0][0] * rhs.a[0][0] % mod + 1 * a[0][1] * rhs.a[1][0] % mod);ans.a[0][1] = Mod(1 * a[0][0] * rhs.a[0][1] % mod + 1 * a[0][1] * rhs.a[1][1] % mod);}else{ans.a[0][0] = Mod(1 * a[0][0] * rhs.a[0][0] % mod + 1 * a[0][1] * rhs.a[1][0] % mod);ans.a[0][1] = Mod(1 * a[0][0] * rhs.a[0][1] % mod + 1 * a[0][1] * rhs.a[1][1] % mod);ans.a[1][0] = Mod(1 * a[1][0] * rhs.a[0][0] % mod + 1 * a[1][1] * rhs.a[1][0] % mod);ans.a[1][1] = Mod(1 * a[1][0] * rhs.a[0][1] % mod + 1 * a[1][1] * rhs.a[1][1] % mod);}return ans;}
} u[N], ru[N];
struct Tree
{struct tree{Matrix v;int sum;short ad;} tr[M];void down(signed p){if (Ad > 0){tr[ls].v = tr[ls].v * u[Ad], tr[ls].ad += Ad;tr[rs].v = tr[rs].v * u[Ad], tr[rs].ad += Ad;Ad = 0;}else if (Ad < 0){tr[ls].v = tr[ls].v * ru[-Ad], tr[ls].ad += Ad;tr[rs].v = tr[rs].v * ru[-Ad], tr[rs].ad += Ad;Ad = 0;}}void update(int p) { tr[p].v = tr[ls].v + tr[rs].v; }void insert(int l, int r, int x, signed p, int rk){++tr[p].sum;if (l == r){tr[p].v = Matrix(1, 2);tr[p].v.a[0][0] = 1 * fib[rk - 1] * b[x] % mod;tr[p].v.a[0][1] = 1 * fib[rk] * b[x] % mod;return;}down(p);if (mid >= x)insert(l, mid, x, ls, rk);elseinsert(mid + 1, r, x, rs, rk);update(p);}void insert(int x, int rk) { insert(1, si, x, 1, rk); }void remove(int l, int r, int x, signed p){--tr[p].sum;if (l == r){tr[p].v = Matrix();return;}down(p);if (mid >= x)remove(l, mid, x, ls);elseremove(mid + 1, r, x, rs);update(p);}void remove(int x) { remove(1, si, x, 1); }void multiply(int l, int r, int s, int t, signed p, Matrix &v, short w){if (l >= s && r <= t){tr[p].v = tr[p].v * v, tr[p].ad += w;return;}down(p);if (mid >= s)multiply(l, mid, s, t, ls, v, w);if (mid < t)multiply(mid + 1, r, s, t, rs, v, w);update(p);}void multiply(int s, int t, Matrix &v, short w) { multiply(1, si, s, t, 1, v, w); }int ask_ans() { return tr[1].v.a[0][1]; }int rank(int l, int r, int s, int t, signed p){if (l >= s && r <= t)return tr[p].sum;down(p);int ans = 0;if (mid >= s)ans = rank(l, mid, s, t, ls);if (mid < t)ans += rank(mid + 1, r, s, t, rs);return ans;}int rank(int x) { return rank(1, si, 1, x, 1); }
} tr;
inline void insert(int i)
{if (++mp[id[i]] == 1){tr.insert(id[i], tr.rank(id[i]) + 1);tr.multiply(id[i] + 1, n, u[1], 1);}
}
inline void remove(int i)
{if (--mp[id[i]] == 0){tr.remove(id[i]);tr.multiply(id[i] + 1, n, ru[1], -1);}
}
signed main()
{// freopen("chk.in", "r", stdin);// freopen("chk.out", "w", stdout);n = read(), sq = sqrt(n);mod = read();for (int i = 1; i <= n; ++i)a[i] = read();copy(a + 1, a + n + 1, b + 1);sort(b + 1, b + n + 1);si = unique(b + 1, b + n + 1) - b;for (int i = 1; i <= n; ++i)id[i] = lower_bound(b + 1, b + si, a[i]) - b;for (int i = 1; i <= n; ++i)b[i] = b[i] % mod;fib[1] = fib[2] = 1;for (int i = 3; i <= n; ++i)fib[i] = Mod(fib[i - 1] + fib[i - 2]);u[1] = Matrix(1), ru[1] = Matrix(-1);for (int i = 2; i <= n; ++i)u[i] = u[i - 1] * u[1], ru[i] = ru[i - 1] * ru[1];m = read();for (int i = 1; i <= m; ++i)q[i].l = read(), q[i].r = read(), q[i].id = i;sort(q + 1, q + m + 1);int l = 1, r = 0;for (int i = 1; i <= m; ++i){while (l > q[i].l)insert(--l);while (r < q[i].r)insert(++r);while (l < q[i].l)remove(l++);while (r > q[i].r)remove(r--);res[q[i].id] = tr.ask_ans();}for (int i = 1; i <= m; ++i)write(res[i]), putchar('\n');return 0;
}