JS算法与树(二)

前言

        二叉搜索树(BST)存在一个问题:当你添加的节点数够多的时候,树的一边可能会非常的深。而其他的分支却只有几层。

   

AVL树

        为了解决上面的问题,我们提出一种自平衡二叉搜索树。意思是任何一个节点左右两侧子树的高度之差最多为1。

        添加或移除节点时,AVL树会尝试自动保持自平衡,任意一个节点(无论深度)的左右子树高度最多相差1。添加或移除节点时。AVL树会尽可能尝试转换为完全数。

节点的高度

        节点的高度是从节点到其任意子节点的边的最大值。

        那么我们怎么计算某个节点的高度呢?

        因为我们并无法事先知道树的哪一层里的左分支深还是右分支深。所以我们需要进行层层比较,层层返回其左右分支深度的最大值。

getNodeHeight(node) {if (node == null) {return -1;}return Math.max(this.getNodeHeight(node.left), this.getNodeHeight(node.right)) + 1;
}

递归:

递归后的调用:

平衡因子

        一段能平衡树节点的逻辑。在AVL数中,需要对每个节点计算左子树高度(hl)和右子树高度(hr)。并取其差值。如果差值hr - hl或者hl-hr不为0(一样深),1或-1(只差1个深度)。则需要平衡该AVL树。这就是平衡因子的概念。

        我们一般以hr-hl作为平衡因子。

          可以看到,我们刚才的例子,并不是一颗平衡树。因为节点3的平衡因子为2。也就是节点3的左子树和右子树不平衡。

        计算某个节点的左右子树高度差应该很简单了

getBalanceFactor(node) {const heightDifference = this.getNodeHeight(node.left) - this.getNodeHeight(node.right);
}

        当高度差大于1的时候,我们就需要对数进行自平衡了。

树的旋转

        叉树中任意节点的左右子树的高度差都不大于1。当插入或删除一个节点时,我们需要通过一次或多次树的「旋转」来保持二叉树的平衡。

        树的旋转分为「左旋」「右旋」两种具体操作,这两种操作是完全相反的,互为逆操作。

        左旋是「将该节点的右子树逆时针旋转」,右旋是「将该节点的左子树顺时针旋转」

        对于一个节点node进行左旋操作时,具体操作为:「将node.right子树取下,node.right节点称为新的根节点newRoot,将node接在newRoot的左节点,newRoot.left取下接在node的右节点上。」

        右旋操作相反:「将node.left子树取下,node.left节点作为新的根节点newRoot,将node接在newRoot的右节点,newRoot.right取下接在node的左节点上。」

        

先看这个树,已知的大小关系存在:R>c > Y> b >X >a  

         右旋RR:【子节点左边多右边少,向右单旋转】   适用于左侧子节点的高度大于右侧子节点的高度,且左侧子节点也是平衡或左侧较重。

        左旋LL:【子节点右边多左边少,向左单旋转。适用于左侧节点高度小于右侧子节点高度,且右侧子节点也是平衡或右侧较重

        看到这里你可能会觉得疑惑,什么叫平衡或较重?不急,后面自然会解释。

         简而言之左旋就是把右树节点放自己头上。右旋就是把左树节点放自己头上

        左旋后右旋,便回到最原本的树结构。

         左旋代码:RR

  rotationRR(node) {// node对应的是X X包含了左右树节点,修改后返回出去// 拿出右节点Yconst tmp = node.right;// 把Y的左节点b拿出来放到X,即node的右节点node.right = tmp.left;// 把X放到Y的左树tmp.left = node;// 返回Yreturn tmp;}

        右旋代码:LL

  rotationLL(node) {const tmp = node.left;node.left = tmp.right;tmp.right = node;return tmp;}

        这样就结束了吗?当然不是。上面的旋转只是向左向右的单旋转。

        AVL不平衡存在四种情况:

        第一种情况:R节点的左侧子节点高度高于右侧节点。且R节点的左侧子节点a的子节点(Y-b)重于a的右侧子节点(无)。此时就可以使用我们上面的右旋做法。

         右旋得到:

        第二种情况:R节点的右侧子节点高度高于左侧节点。且R节点的右侧子节点a的子节点(Y-b)重于a的左侧子节点(无)。此时就可以使用我们上面的左旋做法。

        左旋得到:

        第三种情况:R节点的左侧子节点高度高于右侧节点。且R节点的左侧子节点a的子节点(Y-b)重于a的右侧子节点(无)。

如果此时直接右旋: 

依然不平衡。所以这种情况我们需要做两次旋转。

代码:

rotationLR(node) {node.left = this.rotationRR(node.left);return this.rotationLL(node);
}

第四种情况:右侧子节点的高度高于左侧子节点,并且右侧子节点左侧较重。这种情况下我们可以对右侧子节点进行有旋转来修复。然后再对不平衡节点进行一个左旋转来修复。

 

向AVL树中插入节点

        前面讲解了这么多树的旋转,就是为了服务于AVL树中节点的增删。

        步骤很简单,每当我们向AVL树里插入或删除一个节点,便执行平衡性检查。平衡性不通过,便旋转树。

const BalanceFactor = {UNBALANCED_RIGHT: 1,SLIGHTLY_UNBALANCED_RIGHT: 2,BALANCED: 3,SLIGHTLY_UNBALANCED_LEFT: 4,UNBALANCED_LEFT: 5
};
getBalanceFactor(node) {const heightDifference = this.getNodeHeight(node.left) - this.getNodeHeight(node.right);switch (heightDifference) {case -2:return BalanceFactor.UNBALANCED_RIGHT;case -1:return BalanceFactor.SLIGHTLY_UNBALANCED_RIGHT;case 1:return BalanceFactor.SLIGHTLY_UNBALANCED_LEFT;case 2:return BalanceFactor.UNBALANCED_LEFT;default:return BalanceFactor.BALANCED;}
}

        ·左子树高度-右子树高度。当差值为0(default)或-1或1,都属于平衡范围。而2和-2则已经不平衡。-1和1方便让我们辨别哪侧子树较重。

  insert(key) {this.root = this.insertNode(this.root, key);}
insertNode(node, key) {if (node == null) {return new Node(key);} else if (this.compareFn(key, node.key) === Compare.LESS_THAN) {node.left = this.insertNode(node.left, key);} else if (this.compareFn(key, node.key) === Compare.BIGGER_THAN) {node.right = this.insertNode(node.right, key);} else {return node; // duplicated key}// verify if tree is balancedconst balanceFactor = this.getBalanceFactor(node);if (balanceFactor === BalanceFactor.UNBALANCED_LEFT) {if (this.compareFn(key, node.left.key) === Compare.LESS_THAN) {// Left left casenode = this.rotationLL(node);} else {// Left right casereturn this.rotationLR(node);}}if (balanceFactor === BalanceFactor.UNBALANCED_RIGHT) {if (this.compareFn(key, node.right.key) === Compare.BIGGER_THAN) {// Right right casenode = this.rotationRR(node);} else {// Right left casereturn this.rotationRL(node);}}return node;}

从AVL树里移除节点

 removeNode(node, key) {node = super.removeNode(node, key); // {1}if (node == null) {return node;}// verify if tree is balancedconst balanceFactor = this.getBalanceFactor(node);if (balanceFactor === BalanceFactor.UNBALANCED_LEFT) {// Left left caseif (this.getBalanceFactor(node.left) === BalanceFactor.BALANCED ||this.getBalanceFactor(node.left) === BalanceFactor.SLIGHTLY_UNBALANCED_LEFT) {return this.rotationLL(node);}// Left right caseif (this.getBalanceFactor(node.left) === BalanceFactor.SLIGHTLY_UNBALANCED_RIGHT) {return this.rotationLR(node.left);}}if (balanceFactor === BalanceFactor.UNBALANCED_RIGHT) {// Right right caseif (this.getBalanceFactor(node.right) === BalanceFactor.BALANCED ||this.getBalanceFactor(node.right) === BalanceFactor.SLIGHTLY_UNBALANCED_RIGHT) {return this.rotationRR(node);}// Right left caseif (this.getBalanceFactor(node.right) === BalanceFactor.SLIGHTLY_UNBALANCED_LEFT) {return this.rotationRL(node.right);}}return node;}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/94975.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

五金轴尺寸机器视觉测量软硬件方案--康耐德智能

检测内容: 五金轴尺寸机器视觉测量 检测要求: 精度0.015mm,速度180~240个/分钟 视觉可行性分析: 对样品进行了光学实验,并进行图像处理,原则上可以使用机器视觉系统进行测试测量。 结果: 对…

【核心复现】基于改进灰狼算法的并网交流微电网经济优化调度(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥 🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️座右铭&a…

伦敦银交易时间怎么选择?

伦敦银和伦敦金都是全球性的交易品种,一般的现货贵金属交易平台,都可以同时经营这两个品种,而且它们的交易时间是一致的,以香港市场的平台为例,基本上交易时间都会从北京周一的早上7点,延续到周六凌晨5点左…

截取字符串 substr lastIndexOf

效果图 代码 item.content.substr(item.content.lastIndexOf(/) 1, item.content.length - item.content.lastIndexOf(/)) 就可以得到

AAC和ADTS音频格式解析

1.ADTS是个啥 ADTS全称是(Audio Data Transport Stream),是AAC的一种十分常见的传输格式。 记得第一次做demux的时候,把AAC音频的ES流从FLV封装格式中抽出来送给硬件解码器时,不能播;保存到本地用pc的播放器播时,我靠也不能播。当时崩溃了,后来通过查找资料才知道。一般…

ELK安装、部署、调试(四)KAFKA消息队列的安装和部署

1.简介 Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者在网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通…

K8S访问控制------认证(authentication )、授权(authorization )、准入控制(admission control )体系

一、账号分类 在K8S体系中有两种账号类型:User accounts(用户账号),即针对human user的;Service accounts(服务账号),即针对pod的。这两种账号都可以访问 API server,都需要经历认证、授权、准入控制等步骤,相关逻辑图如下所示: 二、authentication (认证) 在…

Linux学习之vsftpd虚拟用户

/etc/vsftpd/vsftpd.conf里边有几项跟vsftpd虚拟用户有关的主要配置: guest_enableYES,允许匿名用户登录vsftpd guest_usernamevirtual,指定虚拟用户账户为virtual,就是把虚拟用户映射成Linux本地用户,这样可以使用Lin…

IP地址、网关、网络/主机号、子网掩码关系

一、IP地址 IP地址组成 IP地址分为两个部分:网络号和主机号 (1)网络号:标识网段,保证相互连接的两个网段具有不同的标识。 (2)主机号:标识主机,同一网段内,主机之间具有相同的网…

自然语言处理(六):词的相似性和类比任务

词的相似性和类比任务 在前面的章节中,我们在一个小的数据集上训练了一个word2vec模型,并使用它为一个输入词寻找语义相似的词。实际上,在大型语料库上预先训练的词向量可以应用于下游的自然语言处理任务,为了直观地演示大型语料…

详解 SpringMVC 的 @RequestMapping 注解

文章目录 1、RequestMapping注解的功能2、RequestMapping注解的位置3、RequestMapping注解的value属性4、RequestMapping注解的method属性5、RequestMapping注解的params属性(了解)6、RequestMapping注解的headers属性(了解)7、Sp…

面试官:说一下 MyBatis 的一级缓存和二级缓存 ?

目录 1. MyBatis 的缓存机制 2. 为什么不默认开启 MyBatis 的二级缓存 3. MyBatis 如何开启二级缓存 4. MyBatis 有哪些缓存清除策略 1. MyBatis 的缓存机制 MyBayis 中包含两级缓存:一级缓存和二级缓存 1. 一级缓存是 SqlSession 级别的,是 MyBati…