AI文本创作在百度App发文的实践

作者 | 内容生态端团队

导读

大语言模型(LLM)指包含数百亿(或更多)参数的语言模型,这些模型通常在大规模数据集上进行训练,以提高其性能和泛化能力。在内容创作工具接入文心一言AI能力后,可以为用户提供更加智能化、个性化的服务,帮助作者降低创作难度和创作成本、提升创作效率,更好地创作自己的作品。本文简述了基于文心一言大模型,落地AI文本创作的基本流程,也是内容创作与AI结合的初步尝试,随着生成式AI创新应用的持续推进,将陆续发布基于图片和视频的更多特色玩法,敬请期待!

全文4732字,预计阅读时间12分钟。

01 背景

随着科技的飞速发展,人工智能领域的大模型技术也日益引人注目。在大模型的广泛应用中,我们看到了其在各种场景下的巨大潜力和价值。大模型技术的发展不仅推动了各个行业的创新和变革,也正在改变着我们对人工智能的理解和预期。

大语言模型(LLM)指包含数百亿(或更多)参数的语言模型。这些模型通常通过在大规模数据集上进行训练,以提高其性能和泛化能力。大型模型的出现受益于计算能力的提升和数据的可获得性增加,使得研究人员能够构建更复杂、更强大的模型来解决各种现实世界的问题。

常见的大模型比如OpenAi的ChatGPT、百度的文心一言,可以更好的理解和生成自然语言。通过对大量文本数据进行训练,它们能够捕捉到语言中的语法、语义和上下文信息。这使得它们在回答问题、提供解释、生成文本和进行对话时更加准确和流畅。并且一经推出,便引起了社会的广泛关注。大语言模型的技术发展对整个AI社区产生了重要影响,也彻底改变我们开发和使用AI算法的方式。

在百度App动态发文接入文心一言AI能力后,可以为用户提供更加智能化、个性化的服务,帮助作者降低创作难度和创作成本、提升创作效率,更好地创作自己的内容。

02 项目介绍

下图展示了在百度App - 发布动态中,AI文本创作的示例。

在这里插入图片描述

内容输入

在这里插入图片描述

AI写诗创作中

在这里插入图片描述

AI写诗创作完成

2.1 整体架构

图片

百度App动态发布器的AI创作是基于百度文心一言的辅助创作功能,可以根据用户的输入续写、改写,以及一些提示词去智能生成文案。

整体业务分为三层:

1、最顶层为业务层,包含端/H5/小程序等实现的手百AI辅助创作、AI笔记等;

2、中间为策略层,提供prompt模版配置能力、输入输出策略控制能力、配置信息管理能力等;

3、底层为文心一言、风控服务等基础服务。

2.2 全流程

图片

业务层调用百家号创作大脑服务,获取账号权限、功能权限、prompt模版配置等信息,根据权限展示功能类型,如:日常动态、AI写诗、旅游出行等;用户输入文案,访问创作大脑文案生成接口,创作大脑校验账号、权限、模版信息,权限校验通过之后访问风控词表,对输入信息进行风控管理;最终创作大脑携带prompt和用户输入问题访问一言服务,获取经过AI润色的文案。

03 关键技术

3.1 Prompt

Prompt(提示词),是给一个大型机器学习模型输入的指令或问题,以引导它生成相应的回答或输出。它通常是一个文本字符串,用于描述所需的信息或任务,并向模型提供上下文和指导,以产生期望的回应。比如在文心一言大模型基础下进行对话、文本生成或其他任务,Prompt起到了引导模型生成输出的作用。良好设计的Prompt可以帮助模型更准确地理解用户的意图,并生成相关和有用的回答,真正有产业/社会价值。一个好的、优质的prompt需要充分发挥我们的理解和想象力,并调动大模型的能力,从而提升我们的工作效率。

3.1.1 Prompt基础定义

Prompt(提示词),简而言之就是驱动大模型进行表达的文本描述。

Prompt 公式 = 任务 + 生成主体 + 细节(可选) + 形式(可选)。

任务:希望模型完成的任务类型,如写诗

主体:生成对象,如写夏日的诗

细节:是否包含表情等细节输出

形式:排版、内容风格

通常优质的Prompt满足以下三点:

表达清晰:通俗易懂,表达简洁清晰,做到不仅可以让模型生成出好的内容,普通人也可以明白其中的含义。

通用型强:在同类任务上,更换主体词后仍有不错效果。

生成稳定:相同提示词情况下,多次生成的内容足够稳定。

优质的Prompt + 大模型 = 优质内容。

3.1.2 Prompt配置

百度App动态发布器提供多款AI创作功能,每个能力会内置一个描述,方便用户进行提问,并且得到满足期望的文案,我们提供如下几个分类:

全文续写:要求大模型使用简洁的语言,为用户续写

全文改写:要求大模型是一位文章改写助手,修改语病并润色用户的内容

日常动态:要求大模型以用户输入为主题,写一段简短的日常动态

AI写诗:要求大模型为用户输入的主题创作简短的诗歌

好物推荐:要求大模型采用活泼的语言风格,写一篇好物推荐文案

旅游出行:要求大模型写一篇旅游出行的随笔,帮助用户表达见闻

3.2 风险控制

在Prompt中增加防御性指令,防止有人恶意Prompt注入,操纵提示词,诱导模型返回非预期的结果,因此我们在整个生产流程会经历如下防范措施:

  • 输入内容返回内容接入内容风控能力,过风控词表;

  • 一言返回清屏以及命中安全词表的情况下,清除用户输入内容;

  • 记录用户信息,根据输入输出内容风险情况对高风险账号进行封禁;

  • 定期巡查历史记录进行分析。

3.3 SSE协议

为了提高聊天的流畅性和响应速度,文心一言采用了SSE作为服务端推送技术。它允许服务端向客户端发送事件,相对于WebSockets或长、短轮询技术,SSE提供了更简单的方式来实现推送。

响应头需添加以下内容:

Content-Type: text/event-stream; charset=utf-8
Cache-Control: no-cache, no-transform
Connection: keep-alive
X-Accel-Buffering: no

客户端通过HTTP GET请求建立与服务器的连接,并指定接收text/event-stream类型的数据,服务器在收到请求后,不立即返回响应,而是保持连接打开,并根据用户的输入生成回复,服务器在生成回复后,将回复作为一个事件发送给客户端,并保持连接打开,等待下一个输入,客户端在收到事件后,解析事件中的数据,并显示在聊天界面上,客户端和服务器之间可以通过同一个连接持续交换数据,直到客户端关闭连接或者服务器出现异常。

相比较于其他方案,SSE使用更简单,不需要添加任何新组件,只需使用现有的后端语言和框架即可。SSE完全复用现有的HTTP协议,因此可以直接运行于现有的代理服务器和认证技术。SSE在浏览器端提供了原生的EventSource对象,可以方便地监听和处理服务器发送的事件。SSE支持断线重连和消息追踪的功能,可以保证数据的完整性和一致性。

3.4 渐变流式展示组件

客户端会根据server返回的数据,进行流式展示。分成下面几个阶段:初始等待、展示中、展示结束,几个状态转换中,对样式的展示也存在不同的变换。

图片

初始等待:需要展示光标并进行光标闪烁。

展示中:要求逐个展示文案且光标闪烁。

展示结束:需要展示完整文案以及隐藏光标。

3.4.1 自定义TextView

以Android为例,首先初始化等待和展示中两个状态,看起来很像Android的EditText组件,但是EditText组件需要处理光标展示、焦点获取、键盘弹出、屏蔽编辑等组合事件,功能上显得不纯粹,还可能存在适配问题。考虑到这里决定通过继承TextView自定义View来实现。

我们只需要考虑3个点,一是逐字显示,二是文字渐变,三是光标。

逐字显示

  • 我们通过自定义Handler定时器对文字进行不断截取后展示即可。

文字渐变

  • 参考常用的ForegroundColorSpan源码会发现,ForegroundColorSpan是通过继承CharacterStyle并实现UpdateAppearance,最终通过重写对应的updateDrawState方法来实现的文字颜色的变更。同样我们也可以通过设置画笔为渐变色并给出渐变色的起止位置,就可以实现文字颜色的渐变效果。而画笔Paint的渐变则可以通过常用api中的LinearGradient来实现就可以了。
override fun updateDrawState(tp: TextPaint?) {tp ?: returnval leadingWidth = tp.measureText(containingText, 0, gradientStart)val gradientWidth = tp.measureText(containingText, gradientStart,gradientEnd)val lineGradient = LinearGradient(leadingWidth,0f,gradientWidth,0f,intArrayOf(startColorInt, endColorInt),floatArrayOf(0f, 1f),Shader.TileMode.CLAMP)tp.shader = lineGradient
}

光标

  • 光标添加:考虑如何每次把光标显示在文案的最后呢?这里我们参考ReplacementSpan,也是通过自定义的Span的方式。ReplacementSpan中有2个方法分别是getSize() 和 draw()方法。getSize() 该方法的返回值会被作为要替换文字的width,draw()在该方法内绘制我们需要的光标到画布中,我们只需要在draw()中,绘制合适大小的圆角矩形的作为光标。
override fun getSize(paint: Paint, text: CharSequence?,start: Int, end: Int, fm: Paint.FontMetricsInt?): Int {return paint.measureText(" ").toInt()
}override fun draw(canvas: Canvas, text: CharSequence?, start: Int, end: Int, x: Float,top: Int, y: Int, bottom: Int, paint: Paint) {canvas.drawRoundRect(x,top.toFloat(), x + width, bottom.toFloat(), rx, ry, cursorPaint)
}
  • 光标闪烁:这里可以使用ValueAnimator动画更新Alpha值,并将Alpha值设置给画笔的透明度。
override fun draw(canvas: Canvas, text: CharSequence?, start: Int, end: Int, x: Float,top: Int, y: Int, bottom: Int, paint: Paint) {cursorPaint.alpha = (alpha * 255).toInt().coerceAtMost(255)canvas.drawRoundRect(x,top.toFloat(), x + width, bottom.toFloat(), rx, ry, cursorPaint)
}

04 总结

本文简述了基于文心一言等大模型,落地AI文本创作的基本流程,也是内容创作与AI结合的初步尝试,随着生成式AI创新应用的持续推进,将陆续发布基于图片和视频的更多特色玩法,敬请期待!

——END——

推荐阅读

DeeTune:基于 eBPF 的百度网络框架设计与应用

百度自研高性能ANN检索引擎,开源了

存储方案作为产品——Midgard探索

百度垂类离线计算系统发展历程

度加剪辑App的MMKV应用优化实践

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/107797.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据课程L2——网站流量项目的算法分析数据处理

文章作者邮箱:yugongshiye@sina.cn 地址:广东惠州 ▲ 本章节目的 ⚪ 了解网站流量项目的算法分析; ⚪ 了解网站流量项目的数据处理; 一、项目的算法分析 1. 概述 网站流量统计是改进网站服务的重要手段之一,通过获取用户在网站的行为,可以分析出哪些内…

学习Bootstrap 5的第八天

目录 加载器 彩色加载器 实例 闪烁加载器 实例 加载器大小 实例 加载器按钮 实例 分页 分页的基本结构 实例 活动状态 实例 禁用状态 实例 分页大小 实例 分页对齐 实例 面包屑(Breadcrumbs) 实例 加载器 彩色加载器 在 Bootstr…

【css | loading】好看的loading特效

示例&#xff1a; https://code.juejin.cn/pen/7277764394618978365 html <div class"pl"><div class"pl__dot"></div><div class"pl__dot"></div><div class"pl__dot"></div><div c…

科技云报道:青云科技为何成为IDC云转型的“神队友”?

科技云报道原创。 如今随着出海企业数量的不断增长&#xff0c;跨境业务也逐渐从蓝海变红海&#xff0c;从“价格战”到“智能战”。 一个明显的变化&#xff0c;来自企业对于出海效率的提升。《埃森哲2022中国企业国际化研究》指出&#xff0c;企业想要在出海浪潮中取胜&…

顺序表详解(接口详解)

顺序表&#xff08;接口详解&#xff09;&#x1f996; 1.线性表2.顺序表2.1 概念及结构 3.接口的实现3.1 定义SeqList3.2 初始化3.3 销毁3.4 打印3.5 扩容3.6 数据插入1.头插2.尾插3.下标插入 3.7 数据删除1.头删2.尾删3.下表删除 3.8 查询数据3.9 数据修改 4.顺序表存在的部分…

工厂设计模式

github&#xff1a;GitHub - QiuliangLee/pattern: 设计模式 概念 根据产品是具体产品还是具体工厂可分为简单工厂模式和工厂方法模式&#xff0c;根据工厂的抽象程度可分为工厂方法模式和抽象工厂模式。 简单工厂模式、工厂方法模式和抽象工厂模式有何区别&#xff1f; - 知…

【SpringCloudAlibaba】Seata分布式事务使用

文章目录 分布式事务问题示例Seata概述、官网一个典型的分布式事务过程处理过程全局GlobalTransactional分布式交易解决方案流程图 Seata安装下载修改conf目录下的application.yml配置文件dashboard demo 分布式事务问题示例 单体应用被拆分成微服务应用&#xff0c;原来的三个…

【微信小程序开发】一文学会使用视图组件进行界面设计

引言 在小程序开发中&#xff0c;界面设计是非常重要的一环。本文将介绍如何学习使用小程序的视图组件进行界面设计&#xff0c;并提供代码示例。 文章目录 引言1. 小程序视图组件简介2. 视图组件的使用方法2.1. 组件的引入2.2. 组件的使用2.3. 组件的事件绑定2.4. 组件的样式设…

微火资讯快报:共享wifi项目怎么样?

共享WiFi项目一直以来都是一个热门的创业方向&#xff0c;它通过将公共场所的WiFi热点转换成二维码&#xff0c;使用户扫码就可轻松地连接并使用网络&#xff0c;而商家也可以通过该平台实现广告宣传、营销推广等功能。下面就让我们来详细了解一下共享WiFi项目的各个方面。 市场…

推荐10个AI人工智能技术网站(一键收藏,应有尽有)

1、Mental AI MentalAI&#xff08;https://ai.ciyundata.com/&#xff09;是一种基于文心大模型的知识增强大语言模型&#xff0c;专注于自然语言处理&#xff08;NLP&#xff09;领域的技术研发。它具备强大的语义理解和生成能力&#xff0c;能够处理各种复杂的自然语言任务。…

算法通关村第十九关:白银挑战-动态规划高频问题

白银挑战-动态规划高频问题 1. 最少硬币数 LeetCode 322 https://leetcode.cn/problems/coin-change/description/ 思路分析 尝试用回溯来实现 假如coins[2,5,7]&#xff0c;amount27&#xff0c;求解过程中&#xff0c;每个位置都可以从[2,5,7]中选择&#xff0c;因此可以…

iwebsec靶场 文件包含漏洞通关笔记3-session文件包含

目录 1.打开靶场 2.源码分析 &#xff08;1&#xff09;session文件包含漏洞的的工作原理 &#xff08;2&#xff09;sessionstart()做了哪些初始化工作 3.获取session文件位置 4.向session写入webshell 5.访问webshell 1.打开靶场 iwebsec 靶场漏洞库iwebsechttp://iw…