消息队列 Kafka

Kafka

Kafka 是一个分布式的基于发布/订阅模式的消息队列(MQ,Message Queue),主要应用于大数据实时处理领域

为什么使用消息队列MQ

在高并发环境下,同步请求来不及处理会发生堵塞,从而触发too many connection错误,引发雪崩效应。比如大量的请求并发访问数据库,导致行锁表锁,最后请求线程会堆积过多

我们使用消息队列,通过异步请求,缓解系统压力,消息队列经常应用于异步处理,流量削峰,应用解耦,消息通讯等场景

当前比较常见的 MQ 中间件有 ActiveMQ、RabbitMQ、RocketMQ、Kafka 等
 

使用消息队列的好处

  • 解耦

允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束

  • 可恢复性

系统的一部分组件失效时,不会影响到整个系统。消息队列降低了进程间的耦合度,所以即使一个处理消息的进程挂了,加入队列的消息仍然可以在系统恢复后被处理

  • 缓冲

有助于控制和优化数据流结果系统的速度,解决生产消息和消费消息的处理速度不一致的情况

  • 灵活性,峰值处理能力

在访问量剧增的情况下,应用仍然需要继续发挥作用,但是这样的突发流量并不常见
如果为以能处理这类峰值访问为标准来投入资源随时待命无疑是巨大的浪费
使用消息队列能够使关键组件顶住突发的访问压力,而不会因为突发的超负荷的请求而完全崩溃
 

  • 异步通信

很多时候,用户不想也不需要立即处理消息。消息队列提供了异步处理机制,允许用户把一个消息放入队列,但并不立即处理它

想向队列中放入多少消息就放多少,然后在需要的时候再去处理它们
 

消息队列的两种模式

  • 点对点模式(一对一,消费者主动拉取数据,消息收到后消息清除)

消息生产者生产消息发送到消息队列中,然后消息消费者从消息队列中取出并且消费消息
消息被消费以后,消息队列中不再有存储,所以消息消费者不可能消费到已经被消费的消息

消息队列支持存在多个消费者,但是对一个消息而言,只会有一个消费者可以消费

  • 发布/订阅模式(一对多,又叫观察者模式,消费者消费数据之后不会清除消息)

消息生产者(发布)将消息发布到 topic 中,同时有多个消息消费者(订阅)消费该消息和点对点方式不同,发布到 topic 的消息会被所有订阅者消费


发布/订阅模式是定义对象间一种一对多的依赖关系,使得每当一个对象(目对标象)的状态发生改变,则所有依赖于它的对象(观察者对象)都会得到通知并自动更新

Kafka 概述

基于 Zookeeper

Kafka 是最初由 Linkedin 公司开发,是一个分布式、支持分区的(partition)、多副本的(replicar 协调的分布式消息中间件系统,它的最大的特性就是可以实时的处理大量数据以满足各种需求场景,比如基于 hadoop 的批处理系统、低延迟的实时系统、Spark/Flink 流式处理引擎,nginx 访问日志,消息服务等等,用 scala 语言编写

Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目
 

Kafka 特性

  • 高吞吐量、低延迟

Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒。每个 topic 可以分多个 Partition,Consumer Group 对 Partition 进行消费操作,提高负载均衡能力和消费能力。

  • 可扩展性

kafka 集群支持热扩展

  • 持久性、可靠性

消息被持久化到本地磁盘,并且支持数据备份防止数据丢失

  • 容错性

允许集群中节点失败(多副本情况下,若副本数量为 n,则允许 n-1 个节点失败)

  • 高并发

支持数千个客户端同时读写

Kafka 系统架构

  • Broker     服务器

一台 kafka 服务器就是一个 broker
一个集群由多个 broker 组成,一个 broker 可以容纳多个 topic

  • Topic   主题

可以理解为一个队列,生产者和消费者面向的都是一个 topic
类似于数据库的表名或者 ES 的 index
物理上不同 topic 的消息分开存储

  • Partition  分区

为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上
一个 topic 可以分割为一个或多个 partition,每个 partition 是一个有序的队列
Kafka 只保证 partition 内的记录是有序的,而不保证 topic 中不同 partition 的顺序

每个 topic 至少有一个 partition,当生产者产生数据的时候,会根据分配策略选择分区
然后将消息追加到指定的分区的队列末尾

分区的原因

  • 方便在集群中扩展,每个Partition可以通过调整以适应它所在的机器,而一个topic又可以有多个Partition组成,因此整个集群就可以适应任意大小的数据了
  • 可以提高并发,因为可以以Partition为单位读写了

基础架构

1、Replica

副本,为保证集群中的某个节点发生故障时,该节点上的 partition 数据不丢失
且 kafka 仍然能够继续工作,kafka 提供了副本机制,一个 topic 的每个分区都有若干个副本
一个 leader 和若干个 follower

2、Leader

每个 partition 有多个副本,其中有且仅有一个作为 Leader
Leader 是当前负责数据的读写的 partition

3、Follower

Follower 跟随 Leader,所有写请求都通过 Leader 路由,数据变更会广播给所有 Follower
Follower 与 Leader 保持数据同步。Follower 只负责备份,不负责数据的读写。
如果 Leader 故障,则从 Follower 中选举出一个新的 Leader
当 Follower 挂掉、卡住或者同步太慢,Leader 会把这个 Follower 从 ISR
(Leader 维护的一个和 Leader 保持同步的 Follower 集合) 列表中删除,重新创建一个 Follower

4、producer

生产者即数据的发布者,该角色将消息 push 发布到 Kafka 的 topic 中。
broker 接收到生产者发送的消息后,broker 将该消息追加到当前用于追加数据的 segment 文件中
生产者发送的消息,存储到一个 partition 中,生产者也可以指定数据存储的 partition

5、Consumer

消费者可以从 broker 中 pull 拉取数据。消费者可以消费多个 topic 中的数据

6、Consumer Group(CG)

消费者组,由多个 consumer 组成
所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者
可为每个消费者指定组名,若不指定组名则属于默认的组

将多个消费者集中到一起去处理某一个 Topic 的数据,可以更快的提高数据的消费能力。
消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费,
防止数据被重复读取,消费者组之间互不影响

7、offset 偏移量

可以唯一的标识一条消息
偏移量决定读取数据的位置,不会有线程安全的问题
消费者通过偏移量来决定下次读取的消息(即消费位置)
消息被消费之后,并不被马上删除,这样多个业务就可以重复使用 Kafka 的消息
某一个业务也可以通过修改偏移量达到重新读取消息的目的,偏移量由用户控制
消息最终是会还被删除的,默认生命周期为 1 周(7*24小时)

8、Zookeeper

Kafka 通过 Zookeeper 来存储集群的 meta 信息

由于 consumer 在消费过程中可能会出现断电宕机等故障,consumer 恢复后,
需要从故障前的位置继续消费,所以 consumer 需要实时记录自己消费到了哪个 offset,
以便故障恢复后继续消费

部署 Kafka 集群

安装 Kafka

//官方下载地址:http://kafka.apache.org/downloads.html
cd /opt
wget https://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.7.1/kafka_2.13-2.7.1.tgz//安装 Kafka
cd /opt/
tar zxvf kafka_2.13-2.7.1.tgz
mv kafka_2.13-2.7.1 /usr/local/kafka//修改配置文件
cd /usr/local/kafka/config/
cp server.properties{,.bak}vim server.properties

修改 Kafka 配置文件

broker.id=0    
#21行,broker的全局唯一编号,每个broker不能重复,因此要在其他机器上配置 
broker.id=1、broker.id=2listeners=PLAINTEXT://192.168.10.17:9092    
#31行,指定监听的IP和端口,如果修改每个broker的IP需区分开来,也可保持默认配置不用修改
num.network.threads=3    #42行,broker 处理网络请求的线程数量,一般情况下不需要去修改
num.io.threads=8         #45行,用来处理磁盘IO的线程数量,数值应该大于硬盘数
socket.send.buffer.bytes=102400       #48行,发送套接字的缓冲区大小
socket.receive.buffer.bytes=102400    #51行,接收套接字的缓冲区大小
socket.request.max.bytes=104857600    #54行,请求套接字的缓冲区大小
log.dirs=/usr/local/kafka/logs        #60行,kafka运行日志存放的路径,也是数据存放的路径
num.partitions=1    #65行,topic在当前broker上的默认分区个数,会被topic创建时的指定参数覆盖
num.recovery.threads.per.data.dir=1    #69行,用来恢复和清理data下数据的线程数量log.retention.hours=168    
#103行,segment文件(数据文件)保留的最长时间,单位为小时,默认为7天,超时将被删除log.segment.bytes=1073741824    
#110行,一个segment文件最大的大小,默认为 1G,超出将新建一个新的segment文件zookeeper.connect=192.168.54.10:2181,192.168.154.20:2181,192.168.154.30:2181    
#123行,配置连接Zookeeper集群地址

修改环境变量 

//修改环境变量
vim /etc/profile
export KAFKA_HOME=/usr/local/kafka
export PATH=$PATH:$KAFKA_HOME/binsource /etc/profile

配置 Zookeeper 启动脚本

//设置开机自启
chmod +x /etc/init.d/kafka
chkconfig --add kafka//分别启动 Kafka
service kafka start

Kafka 命令行操作

创建topic

查看当前服务器中的所有 topic

kafka-topics.sh --list --zookeeper
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181

查看某个 topic 详情

kafka-topics.sh  --describe --zookeeper 
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181

发布消息

kafka-console-producer.sh --broker-list
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181  --topic test

消费消息

kafka-console-consumer.sh --bootstrap-server 
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181
--topic test --from-beginning

--from-beginning:会把主题中以往所有的数据都读取出来

修改分区数

kafka-topics.sh --zookeeper 
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181
--alter --topic test --partitions 6

删除 topic

kafka-topics.sh --delete --zookeeper 
192.168.154.10:2181,192.168.154.20:2181,192.168.154.30:2181 --topic test

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/130724.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【开题报告】如何借助chatgpt完成毕业论文开题报告

步骤 1:确定论文主题和研究问题 首先,你需要确定你的论文主题和研究问题。这可以是与软件开发、算法、人工智能等相关的任何主题。确保主题具有一定的研究性和可行性。 步骤 2:收集相关文献和资料 在开始撰写开题报告之前,收集相…

ACK 云原生 AI 套件:云原生 AI 工程化落地最优路径

作者:胡玉瑜(稚柳) 前言 在过去几年中,人工智能技术取得了突飞猛进的发展,涵盖了机器学习、深度学习和神经网络等关键技术的重大突破,这使得人工智能在各个领域都得到广泛应用,对各行各业产生了深远的影响。 特别值…

Virtual Box + Vagrant 快速搭建 Linux 虚拟开发环境

Virtual Box Vagrant 快速搭建 Linux 虚拟开发环境 1、根据自己所使用的操作系统平台,选择下载对应的虚拟机客户端软件 Virtual Box 并进行安装,这里选择的是 Virtual Box 7.0.10 Windows hosts 平台安装包。 选择安装目录为其他盘,避免默认…

360 G800行车记录仪,不使用降压线如何开机,8芯插头的定义。

G800记录仪的插头是这样的,图中标出了线的颜色。其中红色为常电V,黑色为GND负极,黄色为ACC受车是否启动控制。 这个记录仪原装的电源线没有降压功能,所以这里的V是12V。 记录仪内部有电源板,负责将12V降压为5V。 如果…

vue打印功能

安装 vue3-print-nb yarn add vue3-print-nb //或 npm install vue3-print-nbmain.js中引入 vue3-print-nb import { createApp } from vue; import App from ./App.vue; const app createApp(App); // 打印插件 import print from vue3-print-nb app.use(print) //页面内引…

如何找到新媒体矩阵中存在的问题?

随着数字媒体的发展,企业的新媒体矩阵已成为品牌推广和营销的重要手段之一。 然而,很多企业在搭建新媒体矩阵的过程中,往往会忽略一些问题,导致矩阵发展存在潜在风险,影响整个矩阵运营效果。 因此,找到目前…

React和vue等前端html页面引入自定义字体文件,更改页面字体样式

font-family中列出的是几乎适用于所有计算机的网络安全字体,如:Arial/Helvetica/Georgia/Times New Roman等。但是如果想要一些特别的字体,可以从外部网站中找到并下载,然后在代码中引入。网页自带的字体没有很多,有时…

设计模式 - 状态模式

目录 一. 前言 二. 实现 一. 前言 状态模式(State Pattern):它主要用来解决对象在多种状态转换时,需要对外输出不同的行为的问题。状态和行为是一一对应的,状态之间可以相互转换。当一个对象的内在状态改变时&#x…

c#学习系列相关之多线程(三)----invoke和begininvoke

一、invoke和BeginInvoke的作用 invoke和begininvoke方法的初衷是为了解决在某个非某个控件创建的线程中刷新该控件可能会引发异常的问题。说的可能比较拗口,举个例子:主线程中存在一个文本控件,在一个子线程中要改变该文本的值,此…

Helm upgrade 时 no matches for kind “xxxx“ in version “xxxx“ 问题处理

1. 问题 kubernetes 升过级,但是 helm release 旧版本中有新版本 api 弃用的 version。 在 helm upgrade 时就出现类似如下版本不匹配的错误,导致 helm upgrade 失败。 当然 helm uninstall 再重新安装可能可以跳过这个问题(只要 charts 不再…

点云处理开发测试题目 完整解决方案

点云处理开发测试题目 文件夹中有一个场景的三块点云数据,单位mm。是一个桌子上放了一个纸箱,纸箱上有四个圆孔。需要做的内容是: 1. 绘制出最小外接立方体,得到纸箱的长宽高值。注意高度计算是纸箱平面到桌子平面的距离。 2. 计算出纸箱上的四个圆的圆心坐标和半径,对圆…

【论文阅读】面向抽取和理解基于Transformer的自动作文评分模型的隐式评价标准(实验结果部分)

方法 结果 在这一部分,我们展示对于每个模型比较的聚合的统计分析当涉及到计算特征和独立的特征组(表格1),抽取功能组和对齐重要功能组(表格2),并且最后,我们提供从模型比较&#x…