竞赛选题 深度学习实现行人重识别 - python opencv yolo Reid

文章目录

  • 0 前言
  • 1 课题背景
  • 2 效果展示
  • 3 行人检测
  • 4 行人重识别
  • 5 其他工具
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习的行人重识别算法研究与实现 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 课题背景

行人重识别是计算机视觉领域的研究热点之一,旨在研究不重叠的多个摄像区域间对于特定行人的匹配准确率,是图像检索的子问题,多应用于安防和刑侦。我国实现的视频监控“天网”,就是通过在人流量大的公共区域密集安装监控设备来实现“平安城市”建设。尽管部分摄像头可转动,但仍存在监控盲区和死角等局限性问题,Re-
ID技术弥补了摄像设备的视觉局限性。然而,在实际应用中异时异地相同行人的图像数据,在姿势、前景背景、光线视角以及成像分辨率等方面差异大,使得Re-
ID研究具有挑战性。
行人重识别展示

2 效果展示

手动标记在这里插入图片描述
检测结果
在这里插入图片描述

3 行人检测

本项目实现了基于 yolo框架的行人目标检测算法,并将该目标检测算法应用在图像和视频的识别检测之中。

简介
下图所示为 YOLOv5 的网络结构图,分为输入端,Backbone,Neck 和 Prediction 四个部分。其中,
输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算,Backbone 包括 Focus 结构、CSP
结 构,Neck 包 括 FPN+PAN 结 构,Prediction 包 括GIOU_Loss 结构。
在这里插入图片描述
Head输出层
输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255③==>10×10×255

在这里插入图片描述
相关代码

class Yolo(object):def __init__(self, weights_file, verbose=True):self.verbose = verbose# detection paramsself.S = 7  # cell sizeself.B = 2  # boxes_per_cellself.classes = ["aeroplane", "bicycle", "bird", "boat", "bottle","bus", "car", "cat", "chair", "cow", "diningtable","dog", "horse", "motorbike", "person", "pottedplant","sheep", "sofa", "train","tvmonitor"]self.C = len(self.classes) # number of classes# offset for box center (top left point of each cell)self.x_offset = np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),[self.B, self.S, self.S]), [1, 2, 0])self.y_offset = np.transpose(self.x_offset, [1, 0, 2])self.threshold = 0.2  # confidence scores threholdself.iou_threshold = 0.4#  the maximum number of boxes to be selected by non max suppressionself.max_output_size = 10self.sess = tf.Session()self._build_net()self._build_detector()self._load_weights(weights_file)

4 行人重识别

简介
行人重识别(Person re-identification)也称行人再识别, 被广泛认为是一个图像检索的子问题,
是利用计算机视觉技术判断图像或者视频中是否存在特定行人的技术,
即给定一个监控行人图像检索跨设备下的该行人图像。行人重识别技术可以弥补目前固定摄像头的视觉局限, 并可与行人检测、行人跟踪技术相结合,
应用于视频监控、智能安防等领域。
在这里插入图片描述行人重识别系统

行人检测
主要用于检测视频中出现的人像,作为一个行人重识别首先要做到的就是能够将图片中的行人识别出来,称为Gallery输入。当然,在学术研究领域,行人重识别主要还是关注的下面这个部分,而对于行人检测这部分多选择采用目前已经设计好的框架。
行人重识别
这一部分就是对上面的Probe以及Gallery进行特征提取,当然提取的方式可以是手工提取,也可以使用卷积神经网络进行提取。然后呢,就是对图片的相似度进行度量,根据相似图进行排序。
针对行人重识别系统从细节来说,包括下面几个部分:

  • 特征提取(feature Extraction):学习能够应对在不同摄像头下行人变化的特征。
  • 度量学习(Metric Learning) :将学习到的特征映射到新的空间使相同的人更近不同的人更远。
  • 图像检索(Matching):根据图片特征之间的距离进行排序,返回检索结果

Reid提取特征
行人重识别和人脸识别是类似的,刚开始接触的可以认为就是人脸换成行人的识别。

  1. 截取需要识别的行人底库
    在这里插入图片描述

  2. 保存行人特征,方便进行特征比对

相关代码

# features:reid模型输出512dim特征
person_cossim = cosine_similarity(features, self.query_feat)
max_idx = np.argmax(person_cossim, axis=1)
maximum = np.max(person_cossim, axis=1)
max_idx[maximum < 0.6] = -1
score = maximum
reid_results = max_idx
draw_person(ori_img, xy, reid_results, self.names)  # draw_person name

5 其他工具

OpenCV
是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法。
在这里插入图片描述
本项目中利用opencv进行相关标记工作,相关代码:

import cv2
import numpy as npdef cv_imread(filePath):cv_img = cv2.imdecode(np.fromfile(filePath,dtype=np.uint8), -1)return cv_img# 需要可视化的图片地址
img_path = ‘’
# 对应图片的检测结果
detection_result = []# 如果路径中包含中文,则需要用函数cv_imread的方式来读取,否则会报错
img = cv_imread(img_path)# 可视化
for bb in detection_result:# bb的格式为:[xmin, ymin, xmax, ymax]cv2.rectangle(img, (int(bb[0]), int(bb[1])),(int(bb[2]), int(bb[3])),(255, 0, 0), 2)cv2.imshow('1', img)
cv2.waitKey(0)

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/160037.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【实战Flask API项目指南】之三 路由和视图函数

实战Flask API项目指南之 路由和视图函数 本系列文章将带你深入探索实战Flask API项目指南&#xff0c;通过跟随小菜的学习之旅&#xff0c;你将逐步掌握 Flask 在实际项目中的应用。让我们一起踏上这个精彩的学习之旅吧&#xff01; 前言 当小菜踏入Flask后端开发的世界时&…

Pytorch从零开始实战08

Pytorch从零开始实战——YOLOv5-C3模块实现 本系列来源于365天深度学习训练营 原作者K同学 文章目录 Pytorch从零开始实战——YOLOv5-C3模块实现环境准备数据集模型选择开始训练可视化模型预测总结 环境准备 本文基于Jupyter notebook&#xff0c;使用Python3.8&#xff0c…

ROS学习笔记(4):ROS架构和通讯机制

前提 前4篇文章以及帮助大家快速入门ROS了&#xff0c;而从第5篇开始我们会更加注重知识积累。同时我强烈建议配合B站大学的视频一起服用。 1.ROS架构三层次&#xff1a; 1.基于Linux系统的OS层&#xff1b; 2.实现ROS核心通信机制以及众多机器人开发库的中间层&#xff1b…

Openssl数据安全传输平台019:外联接口类的封装以及动态库的制作 - Bug未解决,感觉不是代码的问题

文章目录 1 外联接口1.1 接口类的封装1.2 共享内存与配置文件 2 json格式配置文件的定义2.1 共享内存中存储的节点结构2.2 服务器端配置文件2.3 客户端配置文件2.4 改进配置文件 3 共享内存类修改4 将接口打包成库(静态/动态)4.1 相关的指令4.1.1 静态库4.1.2 动态库 4.2 外联接…

docker compose实现容器编排

Compose 使用的三个步骤&#xff1a; 使用 Dockerfile 定义应用程序的环境 使用 compose.yml 定义构成应用程序的服务&#xff0c;这样它们可以在隔离环境中一起运行 最后&#xff0c;执行 docker compose up 命令来启动并运行整个应用程序 为什么需要docker compose Dock…

Istio 实战

文章目录 Istio流量管理分享会【1】什么是istio?【2】istio 可以干什么?【3】业务中的痛点?【4】istio 高级流量管理5.1 istio 组件介绍与原理5.2 sidercar何时注入?如何控制是否注入?5.3 查看sidecar 容器插入的容器中的iptablesDestination RuleVirtual ServiceGateways…

Go语言集成开发环境(IDE):GoLand 2023中文

GoLand 2023是一款由JetBrains开发的现代化、功能丰富的Go语言集成开发环境&#xff08;IDE&#xff09;。它提供了智能代码提示和自动完成、强大的内置调试器以及代码重构工具&#xff0c;帮助开发者提高编码效率并确保代码质量。GoLand 2023还支持多种版本控制系统&#xff0…

力扣:有效的括号

自己编写的代码 。 自己的思路&#xff1a; class Solution { private:unordered_map<char,int>symbolValues{{(,1},{),2},{{,4},{},5},{[,8},{],9}, };public:bool isValid(string s) {bool flagfalse;int lenss.length();if (lens % 2 ! 0){flag false;}for…

【深度学习基础】专业术语汇总(欠拟合和过拟合、泛化能力与迁移学习、调参和超参数、训练集、测试集和验证集)

&#x1f4e2;&#xff1a;如果你也对机器人、人工智能感兴趣&#xff0c;看来我们志同道合✨ &#x1f4e2;&#xff1a;不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】 &#x1f4e2;&#xff1a;文章若有幸对你有帮助&#xff0c;可点赞 &#x1f44d;…

stm32 DMA

目录 简介 框图 DMA请求 DMA通道 DMA优先级 DMA 数据 外设到存储器 存储器到外设 存储器到存储器 传多少&#xff0c;单位是什么 传输完成 hal库代码 标准库代码 简介 CPU根据代码内容执行指令&#xff0c;这些众多指令中&#xff0c;有的用于计算、有的用于控制程…

YOLO算法改进6【中阶改进篇】:depthwise separable convolution轻量化C3

常规卷积操作 对于一张55像素、三通道&#xff08;shape为553&#xff09;&#xff0c;经过33卷积核的卷积层&#xff08;假设输出通道数为4&#xff0c;则卷积核shape为3334&#xff0c;最终输出4个Feature Map&#xff0c;如果有same padding则尺寸与输入层相同&#xff08;…

基于LDA主题+协同过滤+矩阵分解算法的智能电影推荐系统——机器学习算法应用(含python、JavaScript工程源码)+MovieLens数据集(三)

目录 前言总体设计系统整体结构图系统流程图 运行环境模块实现1. 数据爬取及处理2. 模型训练及保存1&#xff09;协同过滤2&#xff09;矩阵分解3&#xff09;LDA主题模型 3. 接口实现1&#xff09;流行电影推荐2&#xff09;相邻用户推荐3&#xff09;相似内容推荐 相关其它博…