数据结构与算法(二)动态规划(Java)

目录

    • 一、简介
      • 1.1 什么是动态规划?
      • 1.2 动态规划的两种形式
        • 1)自顶向下的备忘录法(记忆化搜索法)
        • 2)自底向上的动态规划
        • 3)两种方法对比
      • 1.3 动态规划的 3 大步骤
    • 二、小试牛刀:钢条切割
      • 2.1 题目描述
      • 2.2 题目解析
        • 1)第一步:定义数组元素的含义
        • 2)第二步:找出数组元素之间的关系
        • 3)第三步:找出初始值
      • 2.3 最优子结构
      • 2.4 代码实现
        • 1)递归版本
        • 2)备忘录版本
        • 3)自底向上的动态规划

一、简介

1.1 什么是动态规划?

在说明动态规划前,我们先来了解一个小场景:

A: "1+1+1+1+1+1+1+1"A: "上面等式的值是多少?"
B: "(计算...)" "8!"A: "在上面等式的左边写上 '1+',此时等式的值为多少?"
B: "(立刻回答)" "9!"
A: "你这次怎么这么快就知道答案了"
B: "只要在8的基础上加1就行了"

由上面的小故事可知,动态规划 就是 通过记住历史的求解结果来节省时间

1.2 动态规划的两种形式

示例:斐波那契数列,又称黄金分割数列,其数值为:1、1、2、3、5、8、13、21、34,递推公式为:
F ( 0 ) = 1 , F ( 1 ) = 1 , F ( n ) = F ( n − 1 ) + F ( n − 2 ) , n > 2 , n ∈ N ∗ F(0)=1,F(1)=1, F(n)=F(n-1)+F(n-2),n>2,n∈N^{*} F(0)=1,F(1)=1,F(n)=F(n1)+F(n2),n>2,nN
这个算法用递归来实现非常简单,代码如下:

public int fib(int n) {if (n < 2) {return 1;}return fib(n - 1) + fib(n - 2);
}

先来分析一下递归算法的执行流程,假如输入 6,那么执行的递归树如下:

在这里插入图片描述

我们可以发现:

  • 上面的递归树中,每一个结点都会执行一次;
  • 很多结点被重复执行

为了避免这种情况,我们可以把执行过的结点值保存下来,后面用到直接查表,这样可以节省大量时间。

下面看下保存历史记录的两种形式:自顶向下的备忘录法自底向上的动态规划

1)自顶向下的备忘录法(记忆化搜索法)

备忘录法,也叫记忆化搜索法,是比较好理解的:

  • 创建了一个 n+1 大小的数组来保存求出斐波那契数列中的每一个值;
  • 在递归的时候,如果发现之前已经算过了就不再计算;
  • 如果之前没有计算,则计算后放入历史记录中。
public static void main(String[] args) {int n = 6;// 声明数组,用于记录历史,初始化为-1int[] his = new int[n + 1];Arrays.fill(his, -1);System.out.println(fib(n, his));
}public static int fib(int n, int[] his) {if (n < 2) {return 1;}// 读取历史if (his[n] != -1) {return his[n];}int result = fib(n - 1, his) + fib(n - 2, his);// 记录历史his[n] = result;return result;
}
2)自底向上的动态规划

备忘录法还是利用了递归,不管怎样,当计算 fib(6) 的时候还是要去先计算出 fib(1) ~ fib(5),那么为何不先计算出 f(1) ~ f(5) 呢?这就是动态规划的核心:先计算子问题,再由子问题计算父问题

public static int fib(int n) {int[] arr = new int[n + 1];arr[0] = 1;arr[1] = 1;for (int i = 2; i <= n; i++) {arr[i] = arr[i - 2] + arr[i - 1];}return arr[n];
}

自底向上的动态规划方法也是利用数组保存了计算的值,为后面的计算使用。

内存空间优化:

我们观察上面的代码会发现:参与循环的只有 fib(i)fib(i-1)fib(i-2) 项,因此该方法的空间可以进一步的压缩如下:

public static int fib(int n) {int num_i = 0;int num_i_1 = 1;int num_i_2 = 1;for (int i = 2; i <= n; i++) {num_i = num_i_2 + num_i_1;num_i_2 = num_i_1;num_i_1 = num_i;}return num_i;
}
3)两种方法对比
  • 一般来说,由于备忘录的动态规划形式使用了递归,递归的时候会产生额外的开销,所以不推荐。
  • 相比之下,使用自底向上的动态规划方法要好些,也更容易理解。

1.3 动态规划的 3 大步骤

动态规划,无非就是利用 历史记录,来避免我们的重复计算。这些历史记录的存储,一般使用 一维数组二维数组 来保存。

第一步:定义数组元素的含义

  • 上面说了,我们用一个数组来保存历史数据,假设用一维数组 dp[] 来保存。这个时候有一个非常重要的点:如何规定数组元素的含义?dp[i] 代表什么意思?

第二步:找出数组元素之间的关系

  • 动态规划类似于我们高中学习的 数学归纳法。当我们要计算 d[i] 时,可以利用 dp[i-1]、dp[i-2] … dp[1] 来推导证明。

第三步:找出初始值

  • 学过 数学归纳法 的都知道,虽然知道了数组元素之间的关系式后,可以通过 dp[i-1] 和 dp[i-2] 来计算 dp[i],但是我们首先至少要知道 dp[0]dp[1] 才能推导后面的值。dp[0] 和 dp[1] 就是所谓的初始值。

二、小试牛刀:钢条切割

2.1 题目描述

在这里插入图片描述

2.2 题目解析

1)第一步:定义数组元素的含义

由题目可知:

  • p[] 是价格数组,长度为 i 英寸的钢条价格为 p[i]
  • r[] 是最大收益数组,长度为 i 英寸的钢条可以获得的最大收益为 r[i]
  • 钢条的价格不确定,可能切割的收益更高,也可能不切割的收益更高。

通过解析可知,数组元素含义: 长度为 i 英寸的钢条可以获得的最大收益为 r[i]

注意: 这里的 收益是指价格的总和,比如:2 英寸的钢条切割后收益为:1+1=2,相比之下不切割的 5 收益更高。

2)第二步:找出数组元素之间的关系

假如我们要对长度为 4 英寸的钢条进行切割,所有切割方案如下:

在这里插入图片描述

由图可见,我们将 r[4] 的计算转换成了 r[1]~ r[3] 的计算。
r 4 = m a x ( r 1 + r 3 , r 1 + r 1 + r 2 , r 2 + r 2 , p 4 ) ; r_{4}=max(r_{1}+r_{3},r_{1}+r_{1}+r_{2},r_{2}+r_{2},p_{4}); r4=max(r1+r3,r1+r1+r2,r2+r2,p4);
以此类推,可以继续转换 r[3]

由图可见,我们继续将 r[3] 的计算转换成了 r[1]~r[2] 的计算。
r 3 = m a x ( r 1 + r 2 , r 1 + r 1 + r 1 , p 3 ) r_{3}=max(r_{1}+r_{2},r_{1}+r_{1}+r_{1},p_{3}) r3=max(r1+r2,r1+r1+r1,p3)
以此类推,可以继续转换 r[2]

由于 1 英寸的钢条无法切割,所以 r[1]=p[1]
r 2 = m a x ( r 1 + r 1 , p 2 ) r_{2}=max(r_{1}+r_{1},p_{2}) r2=max(r1+r1,p2)
由于 r[2] 中包含了 r[1] + r[1],那么 r[3] 中的:
m a x ( r 1 + r 2 , r 1 + r 1 + r 1 ) = m a x ( r 1 + r 2 ) max(r_{1}+r_{2},r_{1}+r_{1}+r_{1})=max(r_{1}+r_{2}) max(r1+r2,r1+r1+r1)=max(r1+r2)
由于 r[3] 中包含了 r[1] + r[2],那么 r[4] 中的:
m a x ( r 1 + r 3 , r 1 + r 1 + r 2 ) = m a x ( r 1 + r 3 ) max(r_{1}+r_{3},r_{1}+r_{1}+r_{2})=max(r_{1}+r_{3}) max(r1+r3,r1+r1+r2)=max(r1+r3)
所以整理 r[1]r[2]r[3]r[4] 为:
r 1 = p 1 r_{1}=p_{1} r1=p1

r 2 = m a x ( r 1 + r 1 , p 2 ) r_{2}=max(r_{1}+r_{1},p_{2}) r2=max(r1+r1,p2)

r 3 = m a x ( r 1 + r 2 , p 3 ) r_{3}=max(r_{1}+r_{2},p_{3}) r3=max(r1+r2,p3)

r 4 = m a x ( r 1 + r 3 , r 2 + r 2 , p 4 ) r_{4}=max(r_{1}+r_{3},r_{2}+r_{2},p_{4}) r4=max(r1+r3,r2+r2,p4)

根据公式进行递推, r[n] 为:
r n = m a x ( r 1 + r n − 1 , r 2 + r n − 2 , . . . , r n / 2 + r n − n / 2 , p n ) r_{n}=max(r_{1}+r_{n-1},r_{2}+r_{n-2},...,r_{n/2}+r_{n-n/2},p_{n}) rn=max(r1+rn1,r2+rn2,...,rn/2+rnn/2,pn)

3)第三步:找出初始值

其实初始值我们在第二步已经找出来了:

  • r[1]=p[1]=1
  • r[2]=max(r[1]+r[1],p[2])=5

2.3 最优子结构

通过该题我们注意到,为了求规模为n的原问题,我们 先求解形式完全一样,但规模更小的子问题。当完成首次 切割后,我们 将两段钢条看成两个独立的钢条切割问题实例。我们 通过组合两个相关子问题的最优解,并在所有可能的两段切割方案中选取组合收益最大者,构成原问题的最优解

我们称 钢条切割问题 满足 最优子结构 性质:问题的最优解由相关子问题的最优解组合而成,而这些子问题可以独立求解。

2.4 代码实现

1)递归版本

递归很好理解,思路和回溯法是一样的,遍历所有解空间。但这里和上面斐波那契数列的不同之处在于:这里在每一层上都进行了一次最优解的选择,q=Math.max(q, p[i]+cut(n-i)); 这段代码就是选择最优解。

final static int[] p = {1, 5, 8, 9, 10, 17, 17, 20, 24, 30};public static int cut(int n) {if (n == 0) {return 0;}int max = Integer.MIN_VALUE;for (int i = 1; i <= n; i++) {max = Math.max(max, p[i - 1] + cut(n - i));}return max;
}
2)备忘录版本

备忘录方法无非是在递归的时候记录下已经调用过的子函数的值。钢条切割问题的经典之处在于自底向上的动态规划问题的处理,理解了这个也就理解了动态规划的精髓。

public static int cutByHis(int n) {int[] p = {1, 5, 8, 9, 10, 17, 17, 20, 24, 30};int[] r = new int[n + 1];for (int i = 0; i <= n; i++) {r[i] = -1;}return cut(p, n, r);
}public static int cut(int[] p, int n, int[] r) {int q = -1;if (r[n] >= 0)return r[n];if (n == 0)q = 0;else {for (int i = 1; i <= n; i++)q = Math.max(q, cut(p, n - i, r) + p[i - 1]);}r[n] = q;return q;
}
3)自底向上的动态规划

自底向上的动态规划问题中最重要的是要理解在子循环遍历中的 i 变量,相当于上面两个方法中的 n 变量,i-j 主要用于获取历史计算过的问题值。

final static int[] p = {1, 5, 8, 9, 10, 17, 17, 20, 24, 30};public static int cutByDP(int n) {int[] r = new int[n + 1];for (int i = 1; i <= n; i++) {int q = -1;for (int j = 1; j <= i; j++)q = Math.max(q, p[j - 1] + r[i - j]);r[i] = q;}return r[n];
}

整理完毕,完结撒花~ 🌻





参考地址:

1.算法-动态规划 Dynamic Programming–从菜鸟到老鸟,https://blog.csdn.net/u013309870/article/details/75193592

2.告别动态规划,连刷40道动规算法题,我总结了动规的套路,https://blog.csdn.net/hollis_chuang/article/details/103045322

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/170995.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[SHCTF]web方向wp

[SHCTF]web方向wp [WEEK1]babyRCE题目源码wp [WEEK1]1zzphp题目源码wp [WEEK1]ez_serialize题目源码wp [WEEK1]登录就给flag题目wp [WEEK1]生成你的邀请函吧~题目源码wp [WEEK1]飞机大战题目wp [WEEK1]ezphp题目源码wp [WEEK2]no_wake_up题目源码wp [WEEK2]MD5的事就拜托了题目…

postman调用接口报{“detail“:“Method \“DELETE\“ not allowed.“}错误, 解决记录

项目是python代码开发, urls.py 路由中访问路径代码如下: urlpatterns [path(reportmanagement/<int:pk>/, views.ReportManagementDetail.as_view(), namereport-management-detail),] 对应view视图中代码如下: class ReportManagementDetail(GenericAPIView):"…

一篇博客读懂单链表——Single-List

目录 一、初识单链表 单链表是如何构造的&#xff1a; 单链表如何解决顺序表中的问题&#xff1a; 二、单链表的初始定义 三、尾插和头插 3.1 新建结点CreateNode 3.2 打印SLTPrint 3.3 尾插SLTPushBack 3.4 头插SLTPushFront 四、尾删和头删 4.1 尾删SLTPopBack…

GPT-4 Turbo 发布 | 大模型训练的新时代:超算互联网的调度与调优

★OpenAI&#xff1b;ChatGPT;Sam Altman&#xff1b;Assistance API&#xff1b;GPT4 Turbo&#xff1b;DALL-E 3&#xff1b;多模态交互&#xff1b;算力调度&#xff1b;算力调优&#xff1b;大模型训练&#xff1b;GH200&#xff1b;snowflake&#xff1b;AGI&#xff1b;A…

Git精讲(一)

&#x1f4d8;北尘_&#xff1a;个人主页 &#x1f30e;个人专栏:《Linux操作系统》《经典算法试题 》《C》 《数据结构与算法》 ☀️走在路上&#xff0c;不忘来时的初心 文章目录 一、Git初识1、提出问题2、如何解决--版本控制器3、注意事项 二、Git 安装1、Linux-centos2、…

cgo与调用c的回调函数指针

cgo直接调用函数&#xff0c;使用基本数据类型非常简单&#xff0c;包括一些结构体也比较简单&#xff0c;嵌套的稍微复杂些&#xff0c;但也可以&#xff0c;但有的时候&#xff0c;cgo调用c函数&#xff0c;会需要传递一个回调函数的指针&#xff0c;这时候就比较复杂了&…

解释tqdm模块显示进度条:

1. 在Python中&#xff0c;当你使用tqdm模块&#xff08;一个快速、可扩展的Python进度条库&#xff09;时&#xff0c;你可能会看到类似的输出&#xff1a;[6:20:38<6:34:14, 31.25s/it]。 这个输出提供了关于循环进度的详细信息&#xff1a; 6:20:38: 这是已经过去的时…

五分钟利用Vite创建Vue项目

1.准备工具 Vite是尤雨溪团队开发的&#xff0c;官方称是下一代新型前端构建工具&#xff0c;能够显著提升前端开发体验。 上面称是下一代&#xff0c;当前一代当然是我们熟悉的webpack Vite 优势 开发环境中&#xff0c;无需打包操作&#xff0c;可快速的冷启动。轻量快速…

【C++】【Opencv】minMaxLoc()函数详解和示例

minMaxLoc&#xff08;&#xff09;函数 是 OpenCV 库中的一个函数&#xff0c;用于找到一个多维数组中的最小值和最大值&#xff0c;以及它们的位置。这个函数对于处理图像和数组非常有用。本文通过参数和示例详解&#xff0c;帮助大家理解和使用该函数。 参数详解 函数原型…

Flutter有状态组件StatefulWidget生命周期

StatefulWidget是Flutter中的一个有状态的组件&#xff0c;它的生命周期相对复杂一些。下面是StatefulWidget的生命周期方法及其调用顺序&#xff1a; 1. createState(): 当StatefulWidget被插入到Widget树中时&#xff0c;会调用createState()方法来创建与之关联的State对象。…

Redis集群,你真的学会了吗?

目录 1、为什么引入集群 1.1、先来了解集群是什么 1.2、哨兵模式的缺陷 引入集群解决了什么问题 1.3、使用集群&#xff0c;如何存储数据 2、三种主流的分片方式【经典面试题】 2.1、哈希求余算法 2.1.1、哈希求余算法的介绍 2.1.2、哈希求余算法如何扩容 2.2、一致性…

数据分析 - 思考题

上班路上刷到的有趣题