【数据结构】—AVL树(C++实现)

                                                      🎬慕斯主页修仙—别有洞天

                                                 💜本文前置知识: 搜索二叉树

                                                      ♈️今日夜电波:Letter Song—ヲタみん

                                                                1:36━━━━━━️💟──────── 5:35
                                                                    🔄   ◀️   ⏸   ▶️    ☰  

                                      💗关注👍点赞🙌收藏您的每一次鼓励都是对我莫大的支持😍


目录

一、前言          

        AVL树的概念

        AVL树同二叉搜索树的异同 

二、AVL树的实现

         节点的定义

         AVL树的初始化定义

         AVL树的插入(重点及难点!!!) 

         插入大致步骤

        根据规则找节点

         插入并且链接节点

         向上更新bf(平衡因子)的值

        左单旋

        右单旋

        左右双旋 

        右左双旋 

判断是否符合AVL树

三、整体代码 


一、前言          

        本文是基于二叉搜索树的知识前提下对于AVL树进行叙述的,主要叙述的方面在于AVL树的插入方面,因为AVL树同二叉搜索树的最大区别就在于插入的操作和删除操作,删除操作也是类似的,但是难就难在更新平衡因子,后续会补上。而对于其他的操作如:二叉搜索树的查找操作等等都是相似的,因此本文主要介绍AVL树的插入操作。

        AVL树的概念

         AVL树是一种自平衡二叉搜索树,它的特点是保证了每个节点的左右子树的高度差不超过1。它在插入和删除时会自动平衡,以保持树的高度始终在log N的范围内,从而保证了查找、插入、删除等操作的高效性。AVL树的名字来源于其发明者G.M.Adelson-Velsky和E.M.Landis的姓氏缩写。以下为一颗AVL树:

        AVL树同二叉搜索树的异同 

AVL树和二叉搜索树有很多相似之处,但也有许多不同之处。以下是它们的主要异同点:

相同点:

  1. 它们都是自平衡二叉搜索树,也就是说,在插入和删除节点后,它们能够保持一定的平衡性,从而保证查询操作的时间复杂度始终保持在O(logn)级别。
  2. 它们都遵循二叉搜索树的基本性质,即左子树中的所有节点都小于根节点,右子树中的所有节点都大于根节点。

不同点:

  1. 在AVL树中,除了左右子树高度差不能超过1之外,每个叶子节点还必须在左右子树的高度之间,而在二叉搜索树中则没有这样的限制。(AVL中通常定义一个bf值(balance factor)用于记录节点左右子树的高度差
  2. 在AVL树中,任何路径上的节点数差异不能超过1,而在二叉搜索树中则没有这样的要求。
  3. 在插入和删除节点后,AVL树需要进行更多的旋转操作来恢复平衡,而二叉搜索树则不需要这样的步骤。
  4. AVL树更适合于查找操作,因为它通过严格的平衡性保证了查询操作的效率,而二叉搜索树更适合于插入和删除操作,因为它可以通过简单的旋转操作来快速调整树结构。

二、AVL树的实现

         节点的定义

         通过KV模型定义AVL树节点,定义三叉链的结构储存父节点以及左右子树节点的地址,定义了bf(平衡因子)用于记录节点右子树与左子树之差(右-左),通过构造函数初始化列表,特别要将bf置为0,如果不置0后续操作可能会出错(别问作者怎么知道的(〃>皿<))。

template<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;int _bf; // balance factorAVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0){}
};

         AVL树的初始化定义

// AVL: 二叉搜索树 + 平衡因子的限制
template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:// 在AVL树中插入节点bool Insert(const pair<K, V>& kv);// AVL树的验证bool _IsBalance(Node* root){return _IsBalance(_root);}private:// 右单旋void RotateR(Node* parent);// 左单旋void RotateL(Node* parent);// 右左双旋void RotateRL(Node* parent);// 左右双旋void RotateLR(Node* parent);// 求高度int _Height(Node* root );// 根据AVL树的概念验证pRoot是否为有效的AVL树bool _IsBalance(Node* root);private:Node* _root = nullptr;
};

AVL树的插入(重点及难点!!!) 

         插入大致步骤

AVL树的插入操作可以分为以下几步:

  1. 向AVL树中插入一个新节点,首先找到该节点的位置。这可以通过比较新节点的值与当前节点的值来完成,直到找到一个空位置或者到达一个叶子节点为止。按照大往左,小往右,相等返回false的规则。
  2. 依次向下搜索直到找到相应的位置,就将新节点插入到这个位置,并且更新该节点的父节点和兄弟节点的指针。就将新节点插入到这个位置,然后向上更新节点的bf值。
  3. 插入完成后,需要检查新插入的节点是否破坏了AVL树的平衡性。如果破坏了平衡性,就需要执行一系列旋转操作来修复不平衡状态。具体来说,如果新插入的节点使得某个分支的深度增加了一级,那么可以执行一次相应的旋转操作:左旋、右旋、左右旋、右左旋,最后按要求更新各个节点的bf值。

以上就是AVL树的插入操作步骤。需要注意的是,每次插入操作都需要按照这些步骤来进行,才能保证AVL树的平衡性。

        根据规则找节点

         如果_root为空(即空树)则新建节点并返回。比较节点的值,如果插入节点大则往右子树遍历,小则往左子树遍历,如果与节点值相同则无需插入直接返回。后续找到相应的位置后就可跳出循环进行下一步操作。

if (_root == nullptr)
{_root = new Node(kv);return true;
}Node* parent = nullptr;
Node* cur = _root;while (cur)
{if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}
}
         插入并且链接节点

         更新节点信息,新插入节点的_parent值,以及父节点链接他在左子树还是右子树的判断,链入AVL树中。

		cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}
         向上更新bf(平衡因子)的值

在插入之前,parent的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:

        1. 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可。

        2. 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可。

此时:parent的平衡因子可能有三种情况:0,正负1, 正负2

        1. 如果parent的平衡因子为0,说明插入之前parent的平衡因子为正负1,插入后被调整成0,此时满足AVL树的性质,插入成功。

        2. 如果parent的平衡因子为正负1,说明插入前parent的平衡因子一定为0,插入后被更新成正负1,此时以parent为根的树的高度增加,需要继续向上更新。

        3. 如果parent的平衡因子为正负2,则parent的平衡因子违反平衡树的性质,需要对其进行旋转处理。

while (parent)
{if (cur == parent->_left)//根据在左还是右改变bf值{parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0)//bf=0则向上都无需变化{break;}else if (parent->_bf == 1 || parent->_bf == -1)//bf变化向上遍历改变bf值{cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2)//破坏了bf值需要-1<=bf<=1的区间,需要旋转矫正{if (parent->_bf == 2 && cur->_bf == 1)//左旋情况{RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1)//右旋情况{RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1)//右旋再左旋情况{RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1)//左旋再右旋情况{RotateLR(parent);}// 1、旋转让这颗子树平衡了// 2、旋转降低了这颗子树的高度,恢复到跟插入前一样的高度,所以对上一层没有影响,不用继续更新break;}else{assert(false);//其它情况的bf值表示这颗avl树本身就有问题}
}

         左单旋

        由于我们每次插入都会进行调整操作,对此AVL树在新的节点插入前都是合法的,也就是说bf值只会在-1~1之间波动。 当 parent->_bf == 2 && cur->_bf == 1时,我们需要进行左单旋的操作以确保AVL树的合法性(也就是当父节点的右子树高时需要进行左单旋),以下为对此以下为大致的操作图:

        详细旋转过程: 

        对于左单旋操作,我们需要先记录几个节点,分别如下为parent、subR、subRL,因为我们主要是改变这三个的位置。在旋转完成后我们也通过图清晰可见,parent和subR的bf值都是0。

	void RotateL(Node* parent)//左旋{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;subR->_left = parent;Node* parentParent = parent->_parent;parent->_parent = subR;if (subRL)//判断节点subRL是否为空,防止出错subRL->_parent = parent;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (parentParent->_left == parent){parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}parent->_bf = subR->_bf = 0;}

        右单旋

        对于右单旋,操作同左单旋相似,也是需要记录三个节点:parent、subL、subLR,只不过此时我们是向右旋转。当 parent->_bf == -2 && cur->_bf == -1时,我们需要进行右单旋的操作以确保AVL树的合法性(也就是当父节点的左子树高时需要进行右单旋)。在旋转完成后我们也通过图清晰可见,parent和subR的bf值都是0。以下为对此以下为大致的操作图:

	void RotateR(Node* parent)//右旋{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* parentParent = parent->_parent;parent->_parent = subL;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (parentParent->_left == parent){parentParent->_left = subL;}else{parentParent->_right = subL;}subL->_parent = parentParent;}parent->_bf = subL->_bf = 0;}

        左右双旋 

         当parent->_bf == -2 && cur->_bf == 1时,也就意味着我们的插入操作在如下的b的位置,插入后的图为第二张图,对此我们仅仅只进行一次旋转是远远不够的,如下第三张图为以30为父节点(即subL)只进行了一次左单旋后所变化的图,如果我们仔细观察可以发现这非常符合需要右单旋的操作,因此,此时我们以90为父节点再进行一次右单旋操作。 当然双旋最重要的其实是bf值的确定,我们需要根据最开始的subLR的bf值来确定。

当bf == 0,则subLR自己就是新增因此
            parent->_bf = subL->_bf = subLR->_bf = 0;

当bf==-1,则subLR的左子树新增
           parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;

当bf==1,则subLR的右子树新增
           subL->_bf = -1;parent->_bf = 0;subLR->_bf = 0;

	void RotateLR(Node* parent){//...Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){// subLR自己就是新增parent->_bf = subL->_bf = subLR->_bf = 0;}else if (bf == -1){// subLR的左子树新增parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){// subLR的右子树新增subL->_bf = -1;parent->_bf = 0;subLR->_bf = 0;}else{assert(false);}}

          右左双旋 

        当parent->_bf == 2 && cur->_bf == -1时,我们需要进行右左双旋操作,当然同左右双旋一样,只进行一次旋转肯定是不够的,我们也可以猜到先对subR作为一次父节点进行右单旋,在再对parent进行左单旋。

当然双旋最重要的其实是bf值的确定,我们需要根据最开始的subRL的bf值来确定。

当bf == 0,则subRL自己就是新增
            parent->_bf = subR->_bf = subRL->_bf = 0;

当bf==-1,则subRL的左子树新增
            parent->_bf = 0;subRL->_bf = 0;subR->_bf = 1;

当bf==1,则subRL的右子树新增

            parent->_bf = -1;subRL->_bf = 0;subR->_bf = 0;

 

	void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){// subRL自己就是新增parent->_bf = subR->_bf = subRL->_bf = 0;}else if (bf == -1){// subRL的左子树新增parent->_bf = 0;subRL->_bf = 0;subR->_bf = 1;}else if (bf == 1){// subRL的右子树新增parent->_bf = -1;subRL->_bf = 0;subR->_bf = 0;}else{assert(false);}}

判断是否符合AVL树

        主要运用递归的思想,不多阐述,实在不明白可以画递归展开图。 

		int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}bool _IsBalance(Node* root){if (root == nullptr)return true;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return abs(rightHeight - leftHeight) < 2&& _IsBalance(root->_left)&& _IsBalance(root->_right);}

三、整体代码 

#pragma once
#include<iostream>
#include<assert.h>
using namespace std;template<class K, class V>
struct AVLTreeNode
{AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;pair<K, V> _kv;int _bf; // balance factorAVLTreeNode(const pair<K, V>& kv):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _bf(0){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:bool Insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}while (parent){if (cur == parent->_left)//根据在左还是右改变bf值{parent->_bf--;}else{parent->_bf++;}if (parent->_bf == 0)//bf=0则向上都无需变化{break;}else if (parent->_bf == 1 || parent->_bf == -1)//bf变化向上遍历改变bf值{cur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2)//破坏了bf值需要-1<=bf<=1的区间,需要旋转矫正{if (parent->_bf == 2 && cur->_bf == 1)//左旋情况{RotateL(parent);}else if (parent->_bf == -2 && cur->_bf == -1)//右旋情况{RotateR(parent);}else if (parent->_bf == 2 && cur->_bf == -1)//右旋再左旋情况{RotateRL(parent);}else if (parent->_bf == -2 && cur->_bf == 1)//左旋再右旋情况{RotateLR(parent);}// 1、旋转让这颗子树平衡了// 2、旋转降低了这颗子树的高度,恢复到跟插入前一样的高度,所以对上一层没有影响,不用继续更新break;}else{assert(false);//其它情况的bf值表示这颗avl树本身就有问题}}return true;}void InOrder(){_InOrder(_root);cout << endl;}bool IsBalance(){return _IsBalance(_root);}private:void RotateL(Node* parent)//左旋{Node* subR = parent->_right;Node* subRL = subR->_left;parent->_right = subRL;subR->_left = parent;Node* parentParent = parent->_parent;parent->_parent = subR;if (subRL)//判断节点subRL是否为空,防止出错subRL->_parent = parent;if (_root == parent){_root = subR;subR->_parent = nullptr;}else{if (parentParent->_left == parent)//链接subR给父节点的父节点,需要判断是在左子树还是右子树{parentParent->_left = subR;}else{parentParent->_right = subR;}subR->_parent = parentParent;}parent->_bf = subR->_bf = 0;}void RotateR(Node* parent)//右旋{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;if (subLR)subLR->_parent = parent;subL->_right = parent;Node* parentParent = parent->_parent;parent->_parent = subL;if (_root == parent){_root = subL;subL->_parent = nullptr;}else{if (parentParent->_left == parent){parentParent->_left = subL;}else{parentParent->_right = subL;}subL->_parent = parentParent;}parent->_bf = subL->_bf = 0;}void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){// subRL自己就是新增parent->_bf = subR->_bf = subRL->_bf = 0;}else if (bf == -1){// subRL的左子树新增parent->_bf = 0;subRL->_bf = 0;subR->_bf = 1;}else if (bf == 1){// subRL的右子树新增parent->_bf = -1;subRL->_bf = 0;subR->_bf = 0;}else{assert(false);}}void RotateLR(Node* parent){//...Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){// subLR自己就是新增parent->_bf = subL->_bf = subLR->_bf = 0;}else if (bf == -1){// subLR的左子树新增parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){// subLR的右子树新增subL->_bf = -1;parent->_bf = 0;subLR->_bf = 0;}else{assert(false);}}void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_kv.first << " ";_InOrder(root->_right);}int _Height(Node* root){if (root == nullptr)return 0;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;}bool _IsBalance(Node* root){if (root == nullptr)return true;int leftHeight = _Height(root->_left);int rightHeight = _Height(root->_right);if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return abs(rightHeight - leftHeight) < 2&& _IsBalance(root->_left)&& _IsBalance(root->_right);}private:Node* _root = nullptr;
};


                         感谢你耐心的看到这里ღ( ´・ᴗ・` )比心,如有哪里有错误请踢一脚作者o(╥﹏╥)o! 

                                       

                                                                         给个三连再走嘛~  

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/236838.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C 语言超全练习题(一): 初识C语言

文章目录 一、问答题1.1 C语言开发过程是怎样的&#xff1f;1.2 C语言的应用领域有哪些&#xff1f; 二、上机题2.1 第一个C语言程序2.2 一个完整的C语言程序2.3 输出名言2.4 计算出正方形的周长 一、问答题 1.1 C语言开发过程是怎样的&#xff1f; 问题描述&#xff1a;C语言…

10kv配电室无人值守系统

10kv配电室无人值守系统是一种自动化控制系统&#xff0c;依托电易云-智慧电力物联网可以实现对配电室的监测、控制、保护和故障诊断等功能&#xff0c;从而实现配电室的无人值守。该系统主要由控制器、传感器、执行机构、通信模块等组成&#xff0c;可以实现对电力设备的自动化…

【Windows】内网穿透实现hMailServer远程发送邮件

目录 前言1. 安装hMailServer2. 设置hMailServer3. 客户端安装添加账号4. 测试发送邮件5. 安装cpolar6. 创建公网地址7. 测试远程发送邮件8. 固定连接公网地址9. 测试固定远程地址发送邮件 前言 hMailServer 是一个邮件服务器,通过它我们可以搭建自己的邮件服务,通过cpolar内网…

mongoDB非关系型数据库学习记录

一、简介 1.1Mongodb是什么 MongoDB是一个基于分布式文件存储的数据库,官方地址https://www.mongodb.com/ 1.2数据库是什么 数据库(DataBase)是按照数据结构来组织、存储和管理数据的应用程序 1.3数据库的作用 数据库的主要作用就是管理数据,对数据进行增©、删(d)、…

会员管理系统的意义何在?

在当今的商业环境中&#xff0c;会员管理系统已经成为企业运营的重要组成部分。会员管理系统的意义在于不仅能够帮助企业提高效率&#xff0c;提升用户体验&#xff0c;进行数据分析&#xff0c;营销推广&#xff0c;还能够帮助企业增加收入。下面&#xff0c;我们将详细探讨会…

【HTTP协议】简述HTTP协议的概念和特点

&#x1f38a;专栏【网络编程】 &#x1f354;喜欢的诗句&#xff1a;更喜岷山千里雪 三军过后尽开颜。 &#x1f386;音乐分享【如愿】 &#x1f970;欢迎并且感谢大家指出小吉的问题 文章目录 &#x1f33a;概念&#x1f33a;特点&#x1f384;请求协议&#x1f384;响应协议…

Everything结合内网穿透搭建在线资料库并实现随时随地远程访问

Everythingcpolar搭建在线资料库&#xff0c;实现随时随地访问 文章目录 Everythingcpolar搭建在线资料库&#xff0c;实现随时随地访问前言1.软件安装完成后&#xff0c;打开Everything2.登录cpolar官网 设置空白数据隧道3.将空白数据隧道与本地Everything软件结合起来总结 前…

为何要隐藏IP地址?代理ip在网络安全和隐私保护中的作用是什么?

目录 前言 一、为何要隐藏IP地址&#xff1f; 1. 保护隐私。 2. 防止网络攻击。 3. 避免限制和审查。 二、网络上哪些行为需要隐藏IP和更换IP&#xff1f; 1. 下载种子文件。 2. 访问受限网站。 3. 保护网络隐私。 4. 避免被封禁。 三、代理IP在网络安全和隐私保护中…

kali学习

目录 黑客法则&#xff1a; 一&#xff1a;页面使用基础 二&#xff1a;msf和Windows永恒之蓝漏洞 kali最强渗透工具——metasploit 介绍 使用永恒之蓝进行攻击 ​编辑 使用kali渗透工具生成远程控制木马 渗透测试——信息收集 域名信息收集 黑客法则&#xff1a; 一&…

R语言30分钟上手

文章目录 1. 环境&安装1.1. rstudio保存工作空间 2. 创建数据集2.1. 数据集概念2.2. 向量、矩阵2.3. 数据框2.3.1. 创建数据框2.3.2. 创建新变量2.3.3. 变量的重编码2.3.4. 列重命名2.3.5. 缺失值2.3.6. 日期值2.3.7. 数据框排序2.3.8. 数据框合并(合并沪深300和中证500收盘…

理解Gamma传递函数

对于任何认真从事色彩工作或电影和电视母带处理的人来说&#xff0c;掌握Gamma编码是一项重要的知识&#xff0c;但它也可能是最令人困惑的主题之一&#xff0c;因为我们人类的视力与大多数电子设备的工作方式截然不同。 Gamma编码和传递函数的全部工作都是基于向我们的人眼提供…

(二)Tiki-taka算法(TTA)求解无人机三维路径规划研究(MATLAB)

一、无人机模型简介&#xff1a; 单个无人机三维路径规划问题及其建模_IT猿手的博客-CSDN博客 参考文献&#xff1a; [1]胡观凯,钟建华,李永正,黎万洪.基于IPSO-GA算法的无人机三维路径规划[J].现代电子技术,2023,46(07):115-120 二、Tiki-taka算法&#xff08;TTA&#xf…